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The Lexical Analysis
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Lexical Analysis Process

Lexical analysis
- Transform multi-character input stream to token stream

- Reduce length of program representation (remove spaces)

Lexical Analysis or Scanner

if (b == 0) a = b; Preprocessed source
code, read char by char

if ( b == 0 ) a = b ;
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Lexical 
Analyzer

Source 
Program

Parser

get next token

token

Symbol 
Table

Lexical Analyzer and Its Role in 
A Compiler
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Tokens

• Identifiers:  x  y11  elsex

• Keywords:  if  else  while  for  break

• Integers:  2  1000  -20

• Floating-point:  2.0   -0.0010  .02  1e5

• Symbols:  +  * {  }  ++  <<  <  <=  [  ]

• Strings:  “x”  “He said, \”I luv CC\””
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How to Describe Tokens

• Use regular expressions to describe 
programming language tokens!

• A regular expression (RE) is defined 
inductively
– a ordinary character stands for itself

– Î empty symbol

– R|S either R or S (alteration), where R,S = RE

– RS R followed by S (concatenation)

– R* concatenation of R, 0 or more times 
(Kleene closure)
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Language

• A regular expression R describes a set of 
strings of characters denoted L(R)

• L(R) = the language defined by R
– L(abc) = { abc }

– L(hello|goodbye) = { hello, goodbye }

– L(1(0|1)*) = all binary numbers that start with a 1

• Each token can be defined using a regular 
expression
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RE Notational Shorthand

• R+ one or more strings of R:  R(R*)

• R? optional R:  (R|Î)

• [abcd]  one of listed characters:  (a|b|c|d)

• [a-z]   one character from this range:  
(a|b|c|d...|z)

• [^ab]   anything but one of the listed chars

• [^a-z]   one character not from this range
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stmt  if expr then stmt
  | if expr then stmt else stmt
  |  

expr  term relop term
  | term

term  id
  | num

stmt  if expr then stmt
  | if expr then stmt else stmt
  |  

expr  term relop term
  | term

term  id
  | num

Lexical and Syntax Analysis

if  if
then  then
else  else
relop  < | <= | = | <> | > | >=
id  letter (letter | digit)*
num  digit+(.digit+)?(E(+|-)? digit+)?

if  if
then  then
else  else
relop  < | <= | = | <> | > | >=
id  letter (letter | digit)*
num  digit+(.digit+)?(E(+|-)? digit+)?
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How to Break up Text

• REs alone not enough, need rule for 
choosing when get multiple matches

• Longest matching token wins

• Ties in length resolved by priorities

• Token specification order often defines 
priority

• RE’s + priorities + longest matching token 
rule = definition of a lexer

elsex = 0;
else x = 0 ;

elsex = 0 ;

1
2
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Automatic Generation of Lexers

• 2 programs developed at Bell Labs in mid 
70’s for use with UNIX
– Lex – transducer, transforms an input stream into the 

alphabet of the grammar processed by yacc
– Written by Mike E. Lesk

• Flex = fast lex, later developed by Free Software Foundation

– Yacc/bison – yet another compiler/compiler (next lecture)

• Input to lexer generator
– List of regular expressions in priority order
– Associated action with each RE

• Output
– Program that reads input stream and breaks it up into 

tokens according the the REs
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Lex/Flex

Flex

Flex Spec

user defs

tables

lexer and
action routines

user code

lex.yy.c

foo.l

yylex()

tokensrequest

token names, etc
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Lex Specification

• Definition section
– All code contained within “%{“ 

and “%}” is copied to the 
resultant program.  Usually 
has token defns established 
by the parser

– User can provide names for 
complex patterns used in 
rules

– Any additional lexing states 
(states prefaced by %s 
directive)

– Pattern and state definitions 
must start in column 1 (All 
lines with a blank in column 1 
are copied to resulting C file)

lex file always has 3 sections:

definition section

%%

rules section

%%

user functions section



13

Lex Specification

• Rules section
– Contains lexical patterns and semantic actions to be 

performed upon a pattern match.  Actions should be 
surrounded by {} (though not always necessary)

– Again, all lines with a blank in column 1 are copied to the 
resulting C program

• User function section
– All lines in this section are copied to the final .c file

– Unless the functions are very immediate support 
routines, better to put these in a separate file
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Partial Flex Program

actionpattern

D [0-9]
%%
if printf ("IF statement\n");
[a-z]+ printf ("ID, value %s\n", yytext);
{D}+ printf ("decimal number %s\n", yytext);
"++" printf ("incrementation op\n");
"+" printf ("addition op\n");

D [0-9]
%%
if printf ("IF statement\n");
[a-z]+ printf ("ID, value %s\n", yytext);
{D}+ printf ("decimal number %s\n", yytext);
"++" printf ("incrementation op\n");
"+" printf ("addition op\n");

Note: yytext is a pointer to first char of the token
yyleng = length of token

Note: yytext is a pointer to first char of the token
yyleng = length of token
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Flex Program

• Running the above program:
neo$ flex count.l

neo$ gcc lex.yy.c -lfl

neo$ a.out < count.l

# of lines = 16, # of chars = 221

%{
#include <stdio.h>
int num_lines = 0, num_chars = 0;

%}

%%
\n      ++num_lines; ++num_chars;
.       ++num_chars;

%%
int main()
{
 yylex();
 printf( "# of lines = %d, # of chars = %d \n",num_lines, num_chars );
}

%{
#include <stdio.h>
int num_lines = 0, num_chars = 0;

%}

%%
\n      ++num_lines; ++num_chars;
.       ++num_chars;

%%
int main()
{
 yylex();
 printf( "# of lines = %d, # of chars = %d \n",num_lines, num_chars );
}
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Lex Program for A Lexer in a Compiler
%{

/* definitions of manifest constants
LT, LE, EQ, NE, GT,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */
delim [ \t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+\-]?(digit)+)?

%%
{ws} {/* no action and no return */}
if {return(IF);}
then {return(THEN);}
else {return(ELSE);}
{id} {yylval = install_id(); return(ID);}
{number} {yylval = install_num(); return(NUMBER);}
"<" {yylval = LT; return(RELOP);}
"<=" {yylval = LE; return(RELOP);}
"=" {yylval = EQ; return(RELOP);}
"<>" {yylval = NE; return(RELOP);}
">" {yylval = GT; return(RELOP);}
">=" {yylval = GE; return(RELOP);}

%%

int install_id() {
/* procedure to install the lexeme, whose first character is pointed by yytext 
and whose length is yyleng, into the symbol table and return an index thereof */

}

int install_num() {
/* similar procedure to install a lexeme that is a number */

}

%{
/* definitions of manifest constants
LT, LE, EQ, NE, GT,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */
delim [ \t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+\-]?(digit)+)?

%%
{ws} {/* no action and no return */}
if {return(IF);}
then {return(THEN);}
else {return(ELSE);}
{id} {yylval = install_id(); return(ID);}
{number} {yylval = install_num(); return(NUMBER);}
"<" {yylval = LT; return(RELOP);}
"<=" {yylval = LE; return(RELOP);}
"=" {yylval = EQ; return(RELOP);}
"<>" {yylval = NE; return(RELOP);}
">" {yylval = GT; return(RELOP);}
">=" {yylval = GE; return(RELOP);}

%%

int install_id() {
/* procedure to install the lexeme, whose first character is pointed by yytext 
and whose length is yyleng, into the symbol table and return an index thereof */

}

int install_num() {
/* similar procedure to install a lexeme that is a number */

}
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Lex Regular Expression Meta Chars
Meta Char Meaning
. match any single char (except \n)
* Kleene closure (0 or more)
[] Match any character within brackets

- in first position matches -
^ in first position inverts set

^ matches beginning of line
$ matches end of line
{a,b} match count of preceding pattern

from a to b times, b optional
\ escape for metacharacters
+ positive closure (1 or more)
? matches 0 or 1 REs
| alteration
/ provides lookahead
() grouping of RE
<> restricts pattern to matching only in that state
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How Does Lex Work?

• Formal basis for lexical analysis is the finite 
state automaton (FSA)
– REs generate regular sets

– FSAs recognize regular sets

• FSA – informal defn:
– A finite set of states

– Transitions between states

– An initial state (start)

– A set of final states (accepting states)
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Two Kinds of FSA

• Non-deterministic finite automata (NFA)
– There may be multiple possible transitions or 

some transitions that do not require an input ()

• Deterministic finite automata (DFA)
– The transition from each state is uniquely 

determined by the current input character
• For each state, at most 1 edge labeled ‘a’ leaving 

state

– No  transitions
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NFA Example

0

1

2

3

4

5

a

b

a





start

Recognizes:  aa* | b | ab

 a b
0 1,2,3 - -
1 - 4 -
2 - - 5
3 - 2 -
4 - 4 -
5 - - -

a

Can represent FA with either
graph or transition table
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DFA Example

0

2

3

a

bstart

Recognizes:  aa* | b | ab

a

b

1
a
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NFA vs DFA

• DFA
– Action on each input is fully determined

– Implement using table-driven approach

– More states generally required to implement RE

• NFA
– May have choice at each step

– Accepts string if there is ANY path to an 
accepting state

– Not obvious how to implement this
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How Does Lex Work?

FLEX
Regular

Expressions
C code

Some kind of DFAs and NFAs
stuff going on inside
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How Does Lex Work?

RE  NFA

NFA  DFA

Optimize DFA

DFA Simulation
Character

Stream

REs for
Tokens

Token stream
(and errors)

Flex
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Regular Expression to NFA

• Its possible to construct an NFA from a 
regular expression

• Thompson’s construction algorithm
– Build the NFA inductively

– Define rules for each base RE

– Combine for more complex RE’s

s fE

general machine
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Thompson Construction

S F
ε

empty string transition

S F
x alphabet symbol transition

S FE1 A E2
Concatenation:

(E1 E2)
ε εε ε

• New start state S ε-transition to the start state of E1

• ε-transition from final/accepting state of E1 to A, ε-transition from A to start state 
of E2 

• ε-transitions from the final/accepting state E2 to the new final state F
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Thompson Construction

• New start state S ε-transitions to the start states 
of E1 and E2 

• ε-transitions from the final/accepting states of 
E1 and E2 to the new final state F

S F

E
ε

εε

ε Closure: (E*)

A

S F
E1

E2

ε

εε

ε

Alteration: (E1 | E2)
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Thompson Construction - Example

A F
ε

εε

ε

Develop an NFA for the RE: (x | y)*

B C

D E

x

y

First create NFA for (x | y)

A

H

ε

εε

εB C

D E

x

y

S

F

G
ε

ε εε

Then add the closure operator
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Class Problem

Develop an NFA for the RE: (\+? | -?) d+
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NFA to DFA 

• Remove the non-determinism

• 2 problems
– States with multiple outgoing edges due to same 

input

– ε transitions

2

4

a
c

start 1

3

b
ε

ε ε

ε
(a*| b*) c*
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NFA to DFA

• Problem 1: Multiple transitions
– Solve by subset construction

– Build new DFA based upon the power set of states on 
the NFA

– Move (S,a) is relabeled to target a new state whenever 
single input goes to multiple states

1 2
a

a
ba+ b*

(1,a)  1 or 2, create new state 1/2
(1/2,a) 1/2
(1/2,b)  2

1 2

a

a
1/2start start b

b

(2,a)  ERROR
(2,b)  2
Any state with “2” in name is a final state
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NFA to DFA

• Problem 2: ε transitions
– Any state reachable by an ε transition is “part of the 

state”

– ε-closure - Any state reachable from S by ε transitions is 
in the ε-closure; treat ε-closure as 1 big state, always 
include ε-closure as part of the state

2 3

a b

start
1

ε ε

ε-closure(1) = {1,2,3}
ε-closure(2) = {2,3}
create new state 1/2/3
create new state 2/3 

2/3 3

a b

start
1/2/3

a b

(1/2/3, a)  2/3
(1/2/3, b)  3
(2/3, a)  2/3
(2/3, b)  3

a*b*

b
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NFA to DFA - Example

1

2

3start

a

a
b

a

4

65

ε

ε

ε

a

b

b

A B

4

6
a

astart

• ε-closure(1) = {1, 2, 3, 5}

• Create a new state A = {1, 2, 3, 5} and 
examine transitions out of it

• move(A, a) = {3, 6} 

• Call this a new subset state = B = {3, 6} 

• move(A, b) = {4}

• move(B, a) = {6}

• move(B, b) = {4}

• Complete by checking move(4, a); 
move(4, b); move(6, a); move(6, b)
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Class Problem

0 1

4

2

6

3

5

97
ε ε

ε

ε

ε

ε

ε

ε

a

a

b

8 b

Convert this NFA to a DFA
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NFA to DFA Optimizations

• Prior to NFA to DFA 
conversion:

• Empty cycle removal
– Combine nodes that 

comprise cycle

– Combine 2 and 3

• Empty transition 
removal
– Remove state 4, change 

transition 2-4 to 2-1

2

4

c

start 1

3

ε

ε ε

ε

ε ε

2

4

b

start 1

a

ε

c

b



36

State Minimization

• Resulting DFA can be quite large
– Contains redundant or equivalent states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

1 2 3
start

a a

bb

Both DFAs accept
b*ab*a
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State Minimization

• Idea – find groups of equivalent states and 
merge them
– All transitions from states in group G1 go to states in 

another group G2

– Construct minimized DFA such that there is 1 state for 
each group of states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

Basic strategy: identify
distinguishing transitions
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Putting It All Together

• Remaining issues: how to simulate, multiple REs, 
producing a token stream, longest match, rule priority

RE  NFA

NFA  DFA

Optimize DFA

DFA Simulation
Character

Stream

REs for
Tokens

Token stream
(and errors)

Flex
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Simulating the DFA
• Straight-forward translation of DFA to C program

• Transitions from each state/input can be 
represented as table
– Table lookup tells where to go based on current 

state/input

trans_table[NSTATES][NINPUTS];
accept_states[NSTATES];
state = INITIAL;

while (state != ERROR) {
c = input.read();
if (c == EOF) break;
state = trans_table[state][c];

}
return accept_states[state];

trans_table[NSTATES][NINPUTS];
accept_states[NSTATES];
state = INITIAL;

while (state != ERROR) {
c = input.read();
if (c == EOF) break;
state = trans_table[state][c];

}
return accept_states[state];

Not quite
this simple
but close!
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Handling Multiple REs
• Combine the NFAs of all the regular 

expressions into a single NFA

• Accepting states are not equivalent – they 
recognize different REs

keywords

whitespace

identifier

int consts

ε
ε

ε

ε

Minimized
DFA
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Remaining Issues
• Token stream at output

– Associate tokens with final states

– Output corresponding token when reach final 
state

• Longest match
– When in a final state, look if there is a further 

transition.  If no, return the token for the current 
final state

• Rule priority
– Same longest matching token when there is a 

final state corresponding to multiple tokens

– Associate that final state to the token with 
highest priority


