
1

The Lexical Analysis

2

Lexical Analysis Process

Lexical analysis
- Transform multi-character input stream to token stream

- Reduce length of program representation (remove spaces)

Lexical Analysis or Scanner

if (b == 0) a = b; Preprocessed source
code, read char by char

if (b == 0) a = b ;

3

Lexical
Analyzer

Source
Program

Parser

get next token

token

Symbol
Table

Lexical Analyzer and Its Role in
A Compiler

4

Tokens

• Identifiers: x y11 elsex

• Keywords: if else while for break

• Integers: 2 1000 -20

• Floating-point: 2.0 -0.0010 .02 1e5

• Symbols: + * { } ++ << < <= []

• Strings: “x” “He said, \”I luv CC\””

5

How to Describe Tokens

• Use regular expressions to describe
programming language tokens!

• A regular expression (RE) is defined
inductively
– a ordinary character stands for itself

– Î empty symbol

– R|S either R or S (alteration), where R,S = RE

– RS R followed by S (concatenation)

– R* concatenation of R, 0 or more times
(Kleene closure)

6

Language

• A regular expression R describes a set of
strings of characters denoted L(R)

• L(R) = the language defined by R
– L(abc) = { abc }

– L(hello|goodbye) = { hello, goodbye }

– L(1(0|1)*) = all binary numbers that start with a 1

• Each token can be defined using a regular
expression

7

RE Notational Shorthand

• R+ one or more strings of R: R(R*)

• R? optional R: (R|Î)

• [abcd] one of listed characters: (a|b|c|d)

• [a-z] one character from this range:
(a|b|c|d...|z)

• [^ab] anything but one of the listed chars

• [^a-z] one character not from this range

8

stmt if expr then stmt
 | if expr then stmt else stmt
 |

expr term relop term
 | term

term id
 | num

stmt if expr then stmt
 | if expr then stmt else stmt
 |

expr term relop term
 | term

term id
 | num

Lexical and Syntax Analysis

if if
then then
else else
relop < | <= | = | <> | > | >=
id letter (letter | digit)*
num digit+(.digit+)?(E(+|-)? digit+)?

if if
then then
else else
relop < | <= | = | <> | > | >=
id letter (letter | digit)*
num digit+(.digit+)?(E(+|-)? digit+)?

9

How to Break up Text

• REs alone not enough, need rule for
choosing when get multiple matches

• Longest matching token wins

• Ties in length resolved by priorities

• Token specification order often defines
priority

• RE’s + priorities + longest matching token
rule = definition of a lexer

elsex = 0;
else x = 0 ;

elsex = 0 ;

1
2

10

Automatic Generation of Lexers

• 2 programs developed at Bell Labs in mid
70’s for use with UNIX
– Lex – transducer, transforms an input stream into the

alphabet of the grammar processed by yacc
– Written by Mike E. Lesk

• Flex = fast lex, later developed by Free Software Foundation

– Yacc/bison – yet another compiler/compiler (next lecture)

• Input to lexer generator
– List of regular expressions in priority order
– Associated action with each RE

• Output
– Program that reads input stream and breaks it up into

tokens according the the REs

11

Lex/Flex

Flex

Flex Spec

user defs

tables

lexer and
action routines

user code

lex.yy.c

foo.l

yylex()

tokensrequest

token names, etc

12

Lex Specification

• Definition section
– All code contained within “%{“

and “%}” is copied to the
resultant program. Usually
has token defns established
by the parser

– User can provide names for
complex patterns used in
rules

– Any additional lexing states
(states prefaced by %s
directive)

– Pattern and state definitions
must start in column 1 (All
lines with a blank in column 1
are copied to resulting C file)

lex file always has 3 sections:

definition section

%%

rules section

%%

user functions section

13

Lex Specification

• Rules section
– Contains lexical patterns and semantic actions to be

performed upon a pattern match. Actions should be
surrounded by {} (though not always necessary)

– Again, all lines with a blank in column 1 are copied to the
resulting C program

• User function section
– All lines in this section are copied to the final .c file

– Unless the functions are very immediate support
routines, better to put these in a separate file

14

Partial Flex Program

actionpattern

D [0-9]
%%
if printf ("IF statement\n");
[a-z]+ printf ("ID, value %s\n", yytext);
{D}+ printf ("decimal number %s\n", yytext);
"++" printf ("incrementation op\n");
"+" printf ("addition op\n");

D [0-9]
%%
if printf ("IF statement\n");
[a-z]+ printf ("ID, value %s\n", yytext);
{D}+ printf ("decimal number %s\n", yytext);
"++" printf ("incrementation op\n");
"+" printf ("addition op\n");

Note: yytext is a pointer to first char of the token
yyleng = length of token

Note: yytext is a pointer to first char of the token
yyleng = length of token

15

Flex Program

• Running the above program:
neo$ flex count.l

neo$ gcc lex.yy.c -lfl

neo$ a.out < count.l

of lines = 16, # of chars = 221

%{
#include <stdio.h>
int num_lines = 0, num_chars = 0;

%}

%%
\n ++num_lines; ++num_chars;
. ++num_chars;

%%
int main()
{
 yylex();
 printf("# of lines = %d, # of chars = %d \n",num_lines, num_chars);
}

%{
#include <stdio.h>
int num_lines = 0, num_chars = 0;

%}

%%
\n ++num_lines; ++num_chars;
. ++num_chars;

%%
int main()
{
 yylex();
 printf("# of lines = %d, # of chars = %d \n",num_lines, num_chars);
}

16

Lex Program for A Lexer in a Compiler
%{

/* definitions of manifest constants
LT, LE, EQ, NE, GT,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */
delim [\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+\-]?(digit)+)?

%%
{ws} {/* no action and no return */}
if {return(IF);}
then {return(THEN);}
else {return(ELSE);}
{id} {yylval = install_id(); return(ID);}
{number} {yylval = install_num(); return(NUMBER);}
"<" {yylval = LT; return(RELOP);}
"<=" {yylval = LE; return(RELOP);}
"=" {yylval = EQ; return(RELOP);}
"<>" {yylval = NE; return(RELOP);}
">" {yylval = GT; return(RELOP);}
">=" {yylval = GE; return(RELOP);}

%%

int install_id() {
/* procedure to install the lexeme, whose first character is pointed by yytext
and whose length is yyleng, into the symbol table and return an index thereof */

}

int install_num() {
/* similar procedure to install a lexeme that is a number */

}

%{
/* definitions of manifest constants
LT, LE, EQ, NE, GT,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */
delim [\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+\-]?(digit)+)?

%%
{ws} {/* no action and no return */}
if {return(IF);}
then {return(THEN);}
else {return(ELSE);}
{id} {yylval = install_id(); return(ID);}
{number} {yylval = install_num(); return(NUMBER);}
"<" {yylval = LT; return(RELOP);}
"<=" {yylval = LE; return(RELOP);}
"=" {yylval = EQ; return(RELOP);}
"<>" {yylval = NE; return(RELOP);}
">" {yylval = GT; return(RELOP);}
">=" {yylval = GE; return(RELOP);}

%%

int install_id() {
/* procedure to install the lexeme, whose first character is pointed by yytext
and whose length is yyleng, into the symbol table and return an index thereof */

}

int install_num() {
/* similar procedure to install a lexeme that is a number */

}

17

Lex Regular Expression Meta Chars
Meta Char Meaning
. match any single char (except \n)
* Kleene closure (0 or more)
[] Match any character within brackets

- in first position matches -
^ in first position inverts set

^ matches beginning of line
$ matches end of line
{a,b} match count of preceding pattern

from a to b times, b optional
\ escape for metacharacters
+ positive closure (1 or more)
? matches 0 or 1 REs
| alteration
/ provides lookahead
() grouping of RE
<> restricts pattern to matching only in that state

18

How Does Lex Work?

• Formal basis for lexical analysis is the finite
state automaton (FSA)
– REs generate regular sets

– FSAs recognize regular sets

• FSA – informal defn:
– A finite set of states

– Transitions between states

– An initial state (start)

– A set of final states (accepting states)

19

Two Kinds of FSA

• Non-deterministic finite automata (NFA)
– There may be multiple possible transitions or

some transitions that do not require an input ()

• Deterministic finite automata (DFA)
– The transition from each state is uniquely

determined by the current input character
• For each state, at most 1 edge labeled ‘a’ leaving

state

– No transitions

20

NFA Example

0

1

2

3

4

5

a

b

a

start

Recognizes: aa* | b | ab

 a b
0 1,2,3 - -
1 - 4 -
2 - - 5
3 - 2 -
4 - 4 -
5 - - -

a

Can represent FA with either
graph or transition table

21

DFA Example

0

2

3

a

bstart

Recognizes: aa* | b | ab

a

b

1
a

22

NFA vs DFA

• DFA
– Action on each input is fully determined

– Implement using table-driven approach

– More states generally required to implement RE

• NFA
– May have choice at each step

– Accepts string if there is ANY path to an
accepting state

– Not obvious how to implement this

23

How Does Lex Work?

FLEX
Regular

Expressions
C code

Some kind of DFAs and NFAs
stuff going on inside

24

How Does Lex Work?

RE NFA

NFA DFA

Optimize DFA

DFA Simulation
Character

Stream

REs for
Tokens

Token stream
(and errors)

Flex

25

Regular Expression to NFA

• Its possible to construct an NFA from a
regular expression

• Thompson’s construction algorithm
– Build the NFA inductively

– Define rules for each base RE

– Combine for more complex RE’s

s fE

general machine

26

Thompson Construction

S F
ε

empty string transition

S F
x alphabet symbol transition

S FE1 A E2
Concatenation:

(E1 E2)
ε εε ε

• New start state S ε-transition to the start state of E1

• ε-transition from final/accepting state of E1 to A, ε-transition from A to start state
of E2

• ε-transitions from the final/accepting state E2 to the new final state F

27

Thompson Construction

• New start state S ε-transitions to the start states
of E1 and E2

• ε-transitions from the final/accepting states of
E1 and E2 to the new final state F

S F

E
ε

εε

ε Closure: (E*)

A

S F
E1

E2

ε

εε

ε

Alteration: (E1 | E2)

28

Thompson Construction - Example

A F
ε

εε

ε

Develop an NFA for the RE: (x | y)*

B C

D E

x

y

First create NFA for (x | y)

A

H

ε

εε

εB C

D E

x

y

S

F

G
ε

ε εε

Then add the closure operator

29

Class Problem

Develop an NFA for the RE: (\+? | -?) d+

30

NFA to DFA

• Remove the non-determinism

• 2 problems
– States with multiple outgoing edges due to same

input

– ε transitions

2

4

a
c

start 1

3

b
ε

ε ε

ε
(a*| b*) c*

31

NFA to DFA

• Problem 1: Multiple transitions
– Solve by subset construction

– Build new DFA based upon the power set of states on
the NFA

– Move (S,a) is relabeled to target a new state whenever
single input goes to multiple states

1 2
a

a
ba+ b*

(1,a) 1 or 2, create new state 1/2
(1/2,a) 1/2
(1/2,b) 2

1 2

a

a
1/2start start b

b

(2,a) ERROR
(2,b) 2
Any state with “2” in name is a final state

32

NFA to DFA

• Problem 2: ε transitions
– Any state reachable by an ε transition is “part of the

state”

– ε-closure - Any state reachable from S by ε transitions is
in the ε-closure; treat ε-closure as 1 big state, always
include ε-closure as part of the state

2 3

a b

start
1

ε ε

ε-closure(1) = {1,2,3}
ε-closure(2) = {2,3}
create new state 1/2/3
create new state 2/3

2/3 3

a b

start
1/2/3

a b

(1/2/3, a) 2/3
(1/2/3, b) 3
(2/3, a) 2/3
(2/3, b) 3

a*b*

b

33

NFA to DFA - Example

1

2

3start

a

a
b

a

4

65

ε

ε

ε

a

b

b

A B

4

6
a

astart

• ε-closure(1) = {1, 2, 3, 5}

• Create a new state A = {1, 2, 3, 5} and
examine transitions out of it

• move(A, a) = {3, 6}

• Call this a new subset state = B = {3, 6}

• move(A, b) = {4}

• move(B, a) = {6}

• move(B, b) = {4}

• Complete by checking move(4, a);
move(4, b); move(6, a); move(6, b)

34

Class Problem

0 1

4

2

6

3

5

97
ε ε

ε

ε

ε

ε

ε

ε

a

a

b

8 b

Convert this NFA to a DFA

35

NFA to DFA Optimizations

• Prior to NFA to DFA
conversion:

• Empty cycle removal
– Combine nodes that

comprise cycle

– Combine 2 and 3

• Empty transition
removal
– Remove state 4, change

transition 2-4 to 2-1

2

4

c

start 1

3

ε

ε ε

ε

ε ε

2

4

b

start 1

a

ε

c

b

36

State Minimization

• Resulting DFA can be quite large
– Contains redundant or equivalent states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

1 2 3
start

a a

bb

Both DFAs accept
b*ab*a

37

State Minimization

• Idea – find groups of equivalent states and
merge them
– All transitions from states in group G1 go to states in

another group G2

– Construct minimized DFA such that there is 1 state for
each group of states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

Basic strategy: identify
distinguishing transitions

38

Putting It All Together

• Remaining issues: how to simulate, multiple REs,
producing a token stream, longest match, rule priority

RE NFA

NFA DFA

Optimize DFA

DFA Simulation
Character

Stream

REs for
Tokens

Token stream
(and errors)

Flex

39

Simulating the DFA
• Straight-forward translation of DFA to C program

• Transitions from each state/input can be
represented as table
– Table lookup tells where to go based on current

state/input

trans_table[NSTATES][NINPUTS];
accept_states[NSTATES];
state = INITIAL;

while (state != ERROR) {
c = input.read();
if (c == EOF) break;
state = trans_table[state][c];

}
return accept_states[state];

trans_table[NSTATES][NINPUTS];
accept_states[NSTATES];
state = INITIAL;

while (state != ERROR) {
c = input.read();
if (c == EOF) break;
state = trans_table[state][c];

}
return accept_states[state];

Not quite
this simple
but close!

40

Handling Multiple REs
• Combine the NFAs of all the regular

expressions into a single NFA

• Accepting states are not equivalent – they
recognize different REs

keywords

whitespace

identifier

int consts

ε
ε

ε

ε

Minimized
DFA

41

Remaining Issues
• Token stream at output

– Associate tokens with final states

– Output corresponding token when reach final
state

• Longest match
– When in a final state, look if there is a further

transition. If no, return the token for the current
final state

• Rule priority
– Same longest matching token when there is a

final state corresponding to multiple tokens

– Associate that final state to the token with
highest priority

