Code Optimization

1

Code Optimization

- Requirements:
 - Meaning must be preserved (correctness)
 - Speedup must occur on average
 - Work done must be worth the effort
- Opportunities:
 - Programmer (algorithm, directives)
 - Intermediate code
 - Target code

Levels

- Window peephole optimization
- Basic block
- Procedural global (control flow graph)
- Program level interprocedural

Peephole Optimizations

- Constant Folding
 - x := 32 becomes x := 64
 - x := x + 32
- Unreachable Code goto L2 x := x + 1 ← unneeded
- Flow of control optimizations goto L1 becomes goto L2

L1: goto L2

Peephole Optimizations

Algebraic Simplification

 $\mathbf{x} := \mathbf{x} + \mathbf{0} \leftarrow \text{unneeded}$

Dead code

 $\mathbf{x} := 32 \leftarrow$ where x not used after statement

 $y := x + y \rightarrow y := y + 32$

Reduction in strength

 $\mathbf{x} := \mathbf{x} * 2 \qquad \rightarrow \mathbf{x} := \mathbf{x} + \mathbf{x}$

Peephole Optimizations

- Local in nature
- Pattern driven
- Limited by the size of the window

Basic Block Level

- Common Subexpression Elimination
- Constant Propagation
- Dead code elimination
- Plus many others such as copy propagation, value numbering, partial redundancy elimination, ...

Simple example: a[i+1] = b[i+1]

t1 = i + 1t1 = i + 1t2 = b[t1]t2 = b[t1]t3 = i + 1t3 = i + 1a[t3] = t2a[t1] = t2

Common expression can be eliminated

Simple example: a[i+1] = b[i+1]

Now, suppose i is a constant:

i = 4	i = 4	i = 4
t1 = i +1	t1 = 5	t1 = 5
t2 = b[t1]	t2 = b[t1]	t2 = b[5]
a[t1] = t2	a[t1] = t2	a[5] = t2

i = 4
t2 = b[5]
a[5] = t2

Control Flow Graph - CFG

CFG = < V, E, Entry >, where

V = vertices or nodes, representing an instruction or basic block (group of statements).

 $E = (V \times V)$ edges, potential flow of control

Entry is an element of V, the unique program entry

Two sets used in algorithms:

- Succ(v) = {x in V| exists e in E, e = $v \rightarrow x$ }
- Pred(v) = {x in V| exists e in E, e = $x \rightarrow v$ }

Definitions

- point any location between adjacent statements and before and after a basic block.
- A path in a CFG from point p₁ to pn is a sequence of points such that ∀ j, 1 <= j < n, either pi is the point immediately preceding a statement and pi+1 is the point immediately following that statement in the same block, or pi is the end of some block and pi+1 is the start of a successor block.

CFG

Optimizations on CFG

- Must take control flow into account
 - Common Sub-expression Elimination
 - Constant Propagation
 - Dead Code Elimination
 - Partial redundancy Elimination
- Applying one optimization may create opportunities for other optimizations.

An expression \mathbf{x} op \mathbf{y} is redundant at a point p if it has already been computed at some point(s) and no intervening operations redefine \mathbf{x} or \mathbf{y} .

m = 2*y*z	t0 = 2*y	t0 = 2*y
	$m = t0 \star z$	$m = t0 \star z$
n = 3*y*z	t1 = 3*y	t1 = 3*y
	$n = t1 \star z$	n = t1*z
$o = 2 \cdot y - z$	t2 = (2*y)	
	o = t2-z	o = t0-z
redundant		

- An expression e is defined at some point p in the CFG if its value is computed at p. (definition site)
- An expression e is killed at point p in the CFG if one or more of its operands is defined at p. (kill site)
- An expression is available at point p in a CFG if every path leading to p contains a prior definition of e and e is not killed between that definition and p.

Removing Redundant Expressions

Constant Propagation

Constant Propagation

Copy Propagation

Simple Loop Optimizations: Code Motion

L1:

while (i <= limit - 2)</pre>

t1 = limit - 2
if (i > t1) goto L2
body of loop
goto L1
L2:

t := limit - 2
while (i <= t)</pre>

t1 = limit - 2
L1:
 if (i > t1) goto L2
 body of loop
 goto L1
L2:

Simple Loop Optimizations: Strength Reduction

Induction Variables control loop iterations

Simple Loop Optimizations

- Loop transformations are often used to expose other optimization opportunities:
 - Normalization
 - Loop Interchange
 - Loop Fusion
 - Loop Reversal

- . . .

Consider Matrix Multiplication

```
for i = 1 to n do
    for j = 1 to n do
        for k = 1 to n do
            C[i,j] = C[i,j] + A[i,k] + B[k,j]
            end
        end
    end
```


Memory Usage

- For A: Elements are accessed across rows, spatial locality is exploited for cache (assuming row major storage)
- For B: Elements are accessed along columns, unless cache can hold all of B, cache will have problems.
- For C: Single element computed per loop use register to hold

Matrix Multiplication - Version 2

Memory Usage

- For A: Single element loaded for loop body
- For B: Elements are accessed along rows to exploit spatial locality.
- For C: Extra loading/storing, but across rows

Simple Loop Optimizations

- How to determine safety?
 - Does the new multiply give the same answer?
 - Can be reversed?
 - for (I=1 to N) a[I] = a[I+1]

– can this loop be safely reversed?

Data Dependencies

- Flow Dependencies write/read
 - x := 4;
 - y := x + 1
- Output Dependencies write/write x := 4; x := y + 1;
- Antidependencies read/write y := x + 1; x := 4;

Data Dependencies - Example

Global Data Flow Analysis

Collecting information about the way data is used in a program.

- Takes control flow into account
- HL control constructs
 - Simpler syntax driven
 - Useful for data flow analysis of source code
- General control constructs arbitrary branching
- Information needed for optimizations such as: constant propagation, common sub-expressions, partial redundancy elimination ...

Dataflow Analysis: Iterative Techniques

- First, compute local (block level) information
- Iterate until no changes

```
while change do
    change = false
    for each basic block
        apply equations updating IN and OUT
        if either IN or OUT changes, set change to true
    end
```

Live Variable Analysis

- A variable x is <u>live</u> at a point p if there is some path from p where x is used before it is defined.
- Want to determine for some variable x and point p whether the value of x <u>could</u> be used along some path starting at p.
- Information flows backwards
- May 'along some path starting at p'

Global Live Variable Analysis

- Want to determine for some variable *x* and point *p* whether the value of *x* could be used along some path starting at *p*.
- DEF[B] set of variables assigned values in B prior to any use of that variable
- USE[B] set of variables used in B prior to any definition of that variable
- OUT[B] variables live immediately after the block OUT[B]: ∪IN[S] for all S in succ(B)
- IN[B] variables live immediately before the block

IN[B] = USE[B] + (OUT[B] - DEF[B])

DEF[B] and USE[B]

B4	Ø	
B5	Ø	
B6	Ø	

IN

Ø

Ø

Ø

B1

B2

B3

OUT

Block	DEF	USE	
B1	{a,b}	{ }	
B2	{c,d}	{a,b}	
B3	{ }	{b,d}	
B4	{d}	{a,b,e}	
B5	{e}	{a,b,c}	
B6	{a}	{b,d}	

OUT[B1] = IN[B2] IN[B1] = OUT[B1] - $\{a,b\}$ OUT[B2] = IN[B3] + IN[B5] IN[B2] = $\{a,b\}$ + (OUT[B2] - $\{c,d\}$) OUT[B3] = IN[B4] + IN[B5] IN[B3] = $\{b,d\}$ + OUT[B3] OUT[B4] = $\{a,b,e\}$ + (OUT[B3] IN[B4] = $\{a,b,e\}$ + (OUT[B4] - $\{d\}$) OUT[B5] = IN[B6] + IN[B2] IN[B5] = $\{a,b,c\}$ + (OUT[B5] - $\{e\}$) OUT[B6] = \emptyset IN[B6] = $\{b,d\}$ + (OUT[B6] - $\{a\}$)

 $OUT[B] = \bigcup IN[S] \text{ for all } S \text{ in succ}(B)$ IN[B] = USE[B] + (OUT[B] - DEF[B])

Example

Solution

	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN
B1	Ø	Ø	Ø	a,b	Ø	a,b	Ø	a,b,e	е
B2	Ø	Ø	a,b	a,b,c,d	a,b	a,b,c,d,e	a,b,e	a,b,c,d,e	a,b,e
B3	Ø	Ø	b,d	a,b,c,e	a,b,c,d,e	a,b,c,d,e	a,b,c,d,e	a,b,c,d,e	a,b,c,d,e
B4	Ø	b,d	a,b,e	a,b,c,d,e	a,b,c,e	a,b,c,d,e	a,b,c,e	a,b,c,d,e	a,b,c,e
B5	Ø	a,b	a,b,c	a,b,d	a,b,c,d	a,b,d,e	a,b,c,d	a,b,d,e	a,b,c,d
B6	Ø	Ø	b,d	Ø	b,d	Ø	b,d	Ø	b,d

CFG after Live Variable Analysis

Dataflow Analysis Problem #2: Reachability

- A definition of a variable x is a statement that may assign a value to x
- A definition may reach a program point p if there exists some path from the point immediately following the definition to p such that the assignment is not killed along that path
- Concept: relationship between definitions and uses

What Blocks Do Definitions d2 and d4 Reach?

Reachability Analysis: Unstructured Input

- 1. Compute GEN and KILL at block-level
- 2. Compute IN[B] and OUT[B] for B IN[B] = U OUT[P] where P is a predecessor of B OUT[B] = GEN[B] U (IN[B] - KILL[B])
- Repeat step 2 until there are no changes to OUT sets

Reachability Analysis: Step 1

- For each block, compute local (block level) information = GEN/KILL sets
 - GEN[B] = set of definitions generated by B
 - KILL[B] = set of definitions that can not reach the end of B
- This information does not take control flow between blocks into account

Reasoning about Basic Blocks

Effect of single statement: a = b + c

- Uses variables {b,c}
- Kills all definitions of {a}
- Generates new definition (i.e. assigns a value) of {a}

Local Analysis:

- Analyze the effect of each instruction
- Compose these effects to derive information about the entire block

Example

Reachability Analysis: Step 2

- Compute IN/OUT for each block in a forward direction. Start with IN[B] = \emptyset
 - IN[B] = set of defns reaching the start of B
 - $= \cup$ (out[P]) for all predecessor blocks in the CFG
 - OUT[B] = set of defns reaching the end of B

 $= GEN[B] \cup (IN[B] - KILL[B])$

Keep computing IN/OUT sets until a fixed point is reached

Reaching Definitions Algorithm

- Input: Flow graph with GEN and KILL for each block
- Output: in[B] and out[B] for each block.

```
For each block B do out[B] = gen[B], (true if in[B] = emptyset) change := true;
```

```
while change do begin
```

```
change := false;
for each block B do begin
    in[B] := U out[P], where P is a predecessor of B;
    oldout = out[B];
    out[B] := gen[B] U (in[B] - kill [B])
    if out[B] != oldout then change := true;
end
```

end

Reaching Definitions Example

	IN	OUT	
B1	Ø	1,2,3	
B2	Ø	4,5	
B3	Ø	6	
B4	Ø	7	

 $IN[B] = \bigcup(out[P])$ for all predecessor blocks in the CFG $OUT[B] = GEN[B] \cup (IN[B] - KILL[B])$

Reaching Definitions Example

 $IN[B] = \bigcup(out[P])$ for all predecessor blocks in the CFG OUT[B] = GEN[B] + (IN[B] - KILL[B])

	IN	OUT	IN	OUT	
B1	Ø	1,2,3	Ø	1,2,3	
B2	Ø	4,5	OUT[1]+OUT[4] = 1,2,3,7	4,5 + (1,2,3,7 – 1,2,7) = 3,4,5	
B3	Ø	6	OUT[2] = 3,4,5	6 + (3,4,5 – 3) = 4,5,6	
B4	Ø	7	OUT[2]+OUT[3] = 3,4,5,6	7 + (3,4,5,6 – 1,4) = 3,5,6,7	

Reaching Definitions Example

 $IN[B] = \bigcup(out[P])$ for all predecessor blocks in the CFG OUT[B] = GEN[B] + (IN[B] - KILL[B])

	IN	OUT	IN	OUT	IN	OUT
B1	Ø	1,2,3	Ø	1,2,3	Ø	1,2,3
B2	Ø	4,5	1,2,3,7	3,4,5	OUT[1] + OUT[4] = 1,2,3,5,6,7	4,5 + (1,2,3,5,6,7-1,2,7) = 3,4,5,6
B3	Ø	6	3,4,5	4,5,6	OUT[2] = 3,4,5,6	6 + (3,4,5,6 – 3) = 4,5,6
B4	Ø	7	3,4,5,6	3,5,6,7	OUT[2] + OUT[3] = 3,4,5,6	7+(3,4,5,6 – 1,4) = 3,5,6,7

Forward vs. Backward

- Forward flow vs. Backward flow
 - Forward: Compute OUT for given IN, GEN, KILL
 - Information propagates from the predecessors of a vertex
 - Examples: Reachability, available expressions, constant propagation
 - Backward: Compute IN for given OUT, GEN, KILL
 - Information propagates from the successors of a vertex
 - Example: Live variable analysis

Forward vs. Backward Equations

- Forward vs. backward
 - Forward:
 - IN[B] process OUT[P] for all P in predecessors(B)
 - OUT[B] = local U (IN[B] local)
 - Backward:
 - OUT[B] process IN[S] for all S in successor(B)
 - IN[B] = local U (OUT[B] local)

May vs. Must

May vs. Must

Must – true on all paths

Ex: constant propagation – variable must provably hold appropriate constant on all paths in order to do a substitution

May – true on **some path**

Ex: Live variable analysis – a variable is live if it could be used on some path; reachability – a definition reaches a point if it can reach it on some path

May vs. Must Equations

- May vs. Must
 - $-May IN[B] = \cup(out[P])$ for all P in pred(B)
 - Must IN[B] = \cap (out[P]) for all P in pred(B)

Example Equations

Reachability

- $IN[B] = \bigcirc(out[P])$ for all P in pred(B) - OUT[B] = GEN[B] + (IN[B] - KILL[B])
- Live Variable Analysis
 - $OUT[B] = \cup(IN[S])$ for all S in succ(B)
 - $\mathsf{IN}[\mathsf{B}] = \mathsf{USE}[\mathsf{B}] \cup (\mathsf{OUT}[\mathsf{B}] \mathsf{DEF}[\mathsf{B}])$
- Constant Propagation
 - $IN[B] = \cap(out[P])$ for all P in pred(B)
 - $\text{OUT[B]} = \text{DEF}_\text{CONST[B]} \cup (\text{IN[B]} \text{KILL}_\text{CONST[B]})$

Discussion

- Why does this work?
 - Finite set can be represented as bit vectors
 - Theory of lattices
- Is this guaranteed to terminate?
 Sets only grow and since finite in size …
- Can we find ways to reduce the number of iterations?

Choosing Visit Order for Dataflow Analysis

- In forward flow analysis situations, if we visit the blocks in depth first order, we can reduce the number of iterations
- Suppose definition d follows block path 3 → 5 → 19 → 35
 → 16 → 23 → 45 → 4 → 10 → 17 where the block numbering corresponds to the preorder depth-first numbering
- Then we can compute the reach of this definition in 3 iterations of our algorithm

 $3 \rightarrow 5 \rightarrow 19 \rightarrow 35 \rightarrow 16 \rightarrow 23 \rightarrow 45 \rightarrow 4 \rightarrow 10 \rightarrow 17$