
 1

Groovy

Using closures

 2

Closures

● Short anonymous methods that remove the
verbosity of Java's anonymous inner classes

● Derived from the lambda expressions from
functional programming

 3

Motivating example

Example 00

 4

Closure example
def pickEven(n, block) {

 for(int i = 2; i <= n; i += 2) {

 block(i)

 }

}

pickEven(10, { println it })

● The pickEven() method is a higher-order function - a
function that takes functions as arguments or returns a
function as a result.

● The variable block holds a reference to a closure.

 5

Closure as the last argument

def pickEven(n, block) {

 for(int i = 2; i <= n; i += 2) {

 block(i)

 }

}

pickEven(10) { println it }

● In Groovy, we can pass as many closures as we want.
● If a closure is the last argument, there is an elegant

syntax:

 6

Naming closure parameters

def pickEven(n, block) {

 for(int i = 2; i <= n; i += 2) {

 block(i)

 }

}

pickEven(10) { evenNumber -> println evenNumber }

● We can give an alternate name to the closure
argument, if we like:

 7

Binding variables

def pickEven(n, block) {

 for(int i = 2; i <= n; i += 2) {

 block(i)

 }

}

total = 0

pickEven(10) { total += it }

println "Sum of even numbers from 1 to 10 is ${total}"

● A closure is a function with variables bound to a

 context or environment in which it executes.

 8

Curried closures

● From the name Haskell B. Curry, famed
mathematician who contributed to lambda
calculus

● curry() - curries first parameter
● rcurry() - curries last parameter
● ncurry() - curries n-th parameter

 9

Closures and delegation

 10

Tail recursion and trampolines

● trampoline() builds a trampolined variant of the
current closure.

● Under trampoline, the function is supposed to
perform one step of the calculation and, instead of a
recursive call to itself or another function, it return
back a new closure, which will be executed by the
trampoline as the next step.

● Once a non-closure value is returned, the trampoline
stops and returns the value as the final result.

 11

Memoization

● Implementation of dynamic programming built
into Groovy

● Trades space for speed
● Results are cached
● memoize() has unlimited cache
● Using memoizeAtMost() we can limit the cache

size

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

