
Department of Microelectronics and Computer Science

Embedded Systems

1

Dariusz Makowski

Department of Microelectronics and

Computer Science

tel. 631 2720

dmakow@dmcs.pl

http://neo.dmcs.pl/es

mailto:dmakow@dmcs.pl

Department of Microelectronics and Computer Science

Embedded Systems

2

LectureLecture Agenda Agenda

 Microprocessor systems, embedded systems

 ARM processors family

 Peripheral devices

 ARM processor as platform for embedded programs

 Methodology of Designing Embedded Systems

Department of Microelectronics and Computer Science

Embedded Systems

3

Operating SystemOperating System

Operating System (OS) is a dedicated software for microprocessor-based
devices that manages hardware resources and provides environment for
applications.

OS is like an interface between hardware, applications and user:
Piece of software that sits between applications and hardware.
Hides hardware details from applications.
Provides standard interfaces to hardware and software devices.
Provides protection mechanisms.
Typical services:

Memory management (main memory, secondary memory, virtual memory,
paging, file system),

Process management (scheduling, task management, synchronization,
interrupt and exception handling, inter-task communication,

Input-Output management (device driver),

Support for distributed applications and multiprocessors.

Department of Microelectronics and Computer Science

Systemy czasu rzeczywistego

4

Operating System (2)Operating System (2)

We can distinguish three main layers of OS:
Kernel – manages system resources, hardware/software,

Kernel provides functions for tasks management:

Scheduling,

Dispatching,

Intercommunication and synchronisation,

Shell
provides user interface,

access to services of kernel,

File System – mechanisms for storing, organization, manipulation and
retrieval of data.

Department of Microelectronics and Computer Science

Systemy czasu rzeczywistego

5

Computers and software Computers and software

Hardware

Firmware

Operating system

Complex applications
(GUI)

Personal Computer

Hardware

Firmware

Operating system

Simple application

Complex Embedded
computer

Hardware

 FirmwareApplication

Simple Embedded
computer

Personal Computers, Universal Computers:

 High level languages (Assembler, C/C++, Pascal, Java, Basic...)

Embedded systems, controllers:

Low level programming Assembler,

High level languages (C/C++, Basic, Ada).

Department of Microelectronics and Computer Science

Systemy czasu rzeczywistego

7

Design goal of Embedded OSDesign goal of Embedded OS

Small: minimal memory footprint,

Open: many interfaces and protocols, open system standards,

Modular: easy to integrate custom components,

Portable: run on different devices,

Real-time: support of hard deadlines, bounded interrupts, scheduling,
synchronization,

Power consumption: integrated power management, mobile devices,

Robustness: fault tolerant, halts, guards, exceptions, CRC, …

Configurable: adaptable to required functionality.

Department of Microelectronics and Computer Science

Embedded Systems

8

Do we really need Operating System for Embedded Devices ?Do we really need Operating System for Embedded Devices ?

Monolithic kernel is too feature reach, requires significant processing
power, memory, etc...

Simple Embedded Systems can operate without OS – simpler design,
cost-effective solution.

Embedded Systems without OS allows to meet requirements of
Real-Time Operating System (RTOS).

Analysis and debugging is much simpler than usage of operating
system.

Significant amount of Embedded Systems requires only multitasking
functionality.

Department of Microelectronics and Computer Science

Embedded Systems

9

MultitaskingMultitasking

Multitasking is a method by which multiple processes (tasks) share
common processing resources (e.g. CPU).

Single CPU core can only execute single task.

CPU can be assigned to different tasks that are performed in different
time.

Multitasking allows to select one task that will obtain CPU while other
tasks are waiting.

The act of reassigning a CPU from one task to another one is called a
context switch.

When context switches occur frequently enough the illusion of
parallelism is achieved.

Department of Microelectronics and Computer Science

Embedded Systems

11

Pseudo-kernelPseudo-kernel

Simple embedded system can work without operating system – we need only
executive with multitasking functionality.

Multitasking can be achieved with OS and even without operating system.

We can use simple infinite loop (pseudo-kernel).

Program can be divided into non-blocking functions tasks.

Tasks can be executed in turn.

Pseudo-kernels are usually implemented in Embedded Systems build with simple
microcontrollers with small resources (RAM and ROM).

Pseudo-kernels can be divided into two groups:

Systems based on infinite loop.

Systems triggered with interrupts

Department of Microelectronics and Computer Science

Embedded Systems

12

Pooled Loop (1)Pooled Loop (1)

Used for fast response to single devices,

Single and repetitive instruction is used to test events (flags),

If the event has not occurred the next command (task) is executed,

Works well on single processor systems,

Overlapping of events is not allowed or minimized,

Usually implemented in systems as a background task, when interrupts are
available.

Department of Microelectronics and Computer Science

Embedded Systems

13

Pooled Loop (2) – examplePooled Loop (2) – example

...
_branch_main:
 ldr r0, =main
 mov lr, pc
…
void main (void) {
 for (;;) /* execute program in infinite loop */

{
 /* Task 1 */
 if (data_available){ /* check if data received */
 process_data(); /* make some calculations */
 data_available = 0; /* clear flag and give processor time to other task */
 }
 /* Task 2 */
 if (event_2){
 ...do some work here...
 }
 /* Task 3 */
 if (event_3){
 ...do some work here...
 }
 }
}

Department of Microelectronics and Computer Science

Embedded Systems

14

Exercise 1Exercise 1

Write a simple program for terminal device using pooled loop. The terminal device is
equipped with LED matrix display, matrix keyboard, communication interface (e.g.
EIA RS 232) and sound generator.

The system should meets the following criteria:

Device should read data from keyboard,

Display information on the LED display,

Send data via serial interface,

Device should read command from serial interface (e.g. clear display, display
text, etc...),

Generate warning (sound) when error will be detected (error in transmission
or reading keyboard),

Interrupts not available.

Department of Microelectronics and Computer Science

Embedded Systems

15

Cyclic Executives (1)Cyclic Executives (1)

Cyclic Executives:
Run on non-interrupt driven systems,
Provides illusion of simultaneity,
Requires simple and short processes,
Tasks are executed according to Round-Robin algorithm,
In the main loop one can use pointers to functions as a pointers to processes
(stored in the task table),
Intertask synchronisation and communication can be achieved through global
variables.

Department of Microelectronics and Computer Science

Embedded Systems

16

Cyclic Executives (2)Cyclic Executives (2)

void main (void) {

 for (;;) /* execute program in infinite loop */
{

 Task_number_1();
 Task_Number_2();
 Task_Number_3(); /* different rate structures can be achieved by repeating the

 task in the list, e.g. task number there require 3 times more
 processing power */

 Task_Number_3();
 Task_Number_2();
 Task_Number_3();
 Task_Number_2(); /* task number two must be executed more often than other,

 e.g. keyboard reading */
 Task_Number_4();
 ...
 }
}

Tasks cannot be executed in blocking mode. Single task can easily lock the whole
“operating system”.

Department of Microelectronics and Computer Science

Embedded Systems

17

Exercise 2Exercise 2

Write a simple program using Cyclic Executives for 'Space Invaders' game.

How many tasks/processes are required?

Can we really write such a game using infinite loop ?

Available hardware:

Three buttons:
Left/right, fire,

Sound generator,
Diver available, use beep
function.

LCD/VGA screen
Driver available, use only
update_screen function.

Department of Microelectronics and Computer Science

Systemy czasu rzeczywistego

18

Cyclic Executives - Space InvadersCyclic Executives - Space Invaders

void main (void) {
 for (;;) /* execute program in infinite loop */

{
 check_for_keypressed(); /* check if keyboard pressed */
 move_aliens(); /* move alien one line below */
 check_for_keypressed();

check_for_collision(); /* computing collisions */
 beep(); /* generate sound if required */

 check_for_keypressed();
 update_screen(); /* single move done, update screen */
 }
}

Department of Microelectronics and Computer Science

Embedded Systems

19

Cyclic Executives (3)Cyclic Executives (3)

Pointer to function can be used to call available tasks.
We can easily add new task – we only need to modify table with function pointers.
We can easily change order and frequency of called functions/tasks by manipulating
function pointers.
Tasks can be dispatched using interrupts.
Interrupt handler can save and restore context for available tasks.

Exercise 3:
Write a simple multitasking system able to execute max. 10 tasks.
Use table for storing function pointers.

Department of Microelectronics and Computer Science

Embedded Systems

20

Cyclic Executives (3) – function pointerCyclic Executives (3) – function pointer

#define AVAILABLE_TASKS 10
void Task1(void){
 …
 return;
}
 ...
void Task4(void){
 …
 return;
}
void main (void) {
 void (*fp[AVAILABLE_TASKS])(void) = {Task1, Task3, Task2, Task3, Task3, Task4, NULL};
 int TaskNumber=0;
 for (;;) /* execute program in infinite loop */

{
 (*fp[TaskNumber++])();

 if (fp[TaskNumber] == NULL) TaskNumber=0;

 ...
 }
}

Department of Microelectronics and Computer Science

Embedded Systems

21

Pros and Cons of Polled LoopPros and Cons of Polled Loop

Pros:
Simple implementation, easy debugging,

Requires much less resources comparing to OS,

Well defined behaviour of the program (assuming that INT are not used),

No context switching required,

The order of executing task cannot be easily changed.

Cons:
Main loop operates in locking mode, waste processor time for checking events

No support for asynchronous events,

Difficulty in adding new tasks,

Code must “tuned” by programmer,

Suitable for single processor systems with small amount of independent processes,

Inadequate for complex systems, especially with Ethernet support.

Department of Microelectronics and Computer Science

Embedded Systems

22

Cooperative MultitaskingCooperative Multitasking

Multiple tasks share processing resources (CPU).

Tasks cooperates in such a way that voluntarily cede time to each other, e.g.
when one task is waiting for resources (data from RS232 port) processing power
is ceded to another task.

Tasks can be executed in main infinite loop.

Task dispatch can performed with break command or yield() function.

Example 1:

Three processes (process_A...process_C) are executed according to Round Robin algorithms.
No context switching is available, processes use common stack. Program starts with tasks
initialisation. Task switching realised in the main loop using break command.

Example 2:

Four tasks (task0 - task3) are executed according to R-R algorithm. Task switching is realised
with yield function. Each task has its own stack in common memory. After initialisation program
run outside main function (Program Counter is modified according to restored context).

Department of Microelectronics and Computer Science

Embedded Systems

27

Multitasking with InterruptsMultitasking with Interrupts

Context switching can be realized using interrupts from hardware timer (e.g. PIT).

Timer provides time for task executing - quantum or timeslice. Quantum should
be slightly longer that typical reaction of the system, to have enough time to finish
most of the tasks and switch context (e.g. 10-100 ms).

Task are scheduled using interrupt controller. If only single interrupt is available,
interrupt handler is responsible for task scheduling and switching.

Tasks synchronisation can be realized with interrupt masking or application of
global semaphores.

Department of Microelectronics and Computer Science

Embedded Systems

28

Cooperative Multitasking with InterruptsCooperative Multitasking with Interrupts

void main (void) {
/* initialise system, configure handlers of functions, init stack, etc...*/
 init();
 while(1); /* IDLE task */
}

/* Timer generates interrupts */
void int1 (void){
 save(context); /* store context of the previous task */
 restore(++context;) /* restore context of the current task */
 task1(); /* execute task 1 */
}

void int2 (void){
 save(context); /* store context of the previous task */
 restore(++context;) /* restore context of the current task */
 task2(); /* execute task 2 */
}

void int3 (void){
 save(context); /* store context of the previous task */
 restore(++context;) /* restore context of the current task */
 task3(); /* execute task 3 */
}

Department of Microelectronics and Computer Science

Embedded Systems

29

Cooperative Multitasking with Timer InterruptCooperative Multitasking with Timer Interrupt
void main (void) {
/*initialise system, configure handlers of functions, init stack, etc...*/
 init_task1();
 init_task2();
 init_IRQ(); /* configure timer interrupt */
 init_Timer(); /* configure and start timer, timer period = timeslice */

 TaskNumber = NUMBEROFTASKS; /* wait for first timer interrupt */
 while(1); /* IDLE task */
}
void Task_1 (void){
 task1(); /* execute code of task 1 */
 yield(); /* resource busy, switch to the next task */
}
void Task_2 (void){

 task2(); /* execute code of task 2 */
 yield(); /* resource busy, switch to the next task */
}
void yield (void){
 ` /* Trigger software interrupt for timer */
}
Void TimerHandler (void){
 save(context[TaskNumber]); /* store context of the current task */
 TaskNumber = (++TaskNumber) % NUMBEROFTASKS;
 restore(context[TaskNumber]); /* restore context of the new task, recover PC*/
}

Department of Microelectronics and Computer Science

Embedded Systems

30

Cooperative Multitasking with Interrupts - SummaryCooperative Multitasking with Interrupts - Summary

Pros:
Priority of tasks are assigned to interrupts priorities,

Timeslicing – processes are allowed to run in preemptive mode. Time slice or
quantum can be defined for cooperating tasks.

New tasks can be easily added.

Cons:

Priorities depends on interrupt controller or interrupt handler.

Department of Microelectronics and Computer Science

Embedded Systems

31

Drivers of Peripheral Devices

Department of Microelectronics and Computer Science

Embedded Systems

32

Drivers of Peripheral Devices (1)Drivers of Peripheral Devices (1)

Device Driver – program responsible for communication between hardware device and software
programs or applications. Drivers are provided as collection of functions. Drivers are hardware-
dependent and operating-system-specific. Driver imitate some of hardware device features. Driver
functions names and returned values depends in the operating system (OS Application Programming
Interface). Direct access to hardware is restricted in case of OSs – device drivers should be always
used.

In case of Embedded Systems applications can communicate directly with hardware, sometimes it is
difficult to distinguish between drivers and applications. However, it is recommended to separate
application layer functions from hardware using simple device drivers.

User applications

Kernel (Operating System)

Device
driver A

Device
driver B

Device
driver C

Device A Device B Device C

Application layer

Kernel layer

Hardware layer

Department of Microelectronics and Computer Science

Embedded Systems

33

Drivers of Peripheral Devices (2)Drivers of Peripheral Devices (2)

Peripheral Device Driver (internal or external device) – provides basic functions that allow for easy
usage of the device.

Device driver allows to hide hardware device – it provides collection of functions for initialisation and
communication with device. Driver require also interrupt handler and functions for configuration of
interrupts.

Application Driver RTC1
Real Time

Clock
BQ3285

Real Time
Clock

BQ4285
Application Driver RTC2

Change of
hardware
does not
require

modification of
application

Interrupt

Interrupt

Department of Microelectronics and Computer Science

Embedded Systems

34

Drivers – Device InitialisationDrivers – Device Initialisation

Peripheral device driver – functions usually implemented:

Device_Open () - function used for device initialisation

Function can take parameters, e.g. driver controls more that one device, two USART transceivers.
Parameter can be used to calculate offset for device registers.

Function can return operation code or descriptor (pointer to structure describing device status,
device buffers, registers, etc...) to peripheral device.

A few different devices can open driver (dedicated for multioperations). Driver is equipped with
deviceCounter that tells how many devices are connected to driver. In such a case device
initialisation is performed only once.

Device_Close () - function called when application stop using device. Close function should
deactivate device in safe way, e.g. I/O - configure ports as inputs. USART – turn of f
transmitter/receiver, deactivate interrupts.

If function Open was called a few times, the device is used by a few applications, the Close function
decrements only deviceCounter and release semaphore. Device is disabled and resources are freed
when deviceCounter is equal to 0. Function Close can take parameters and returns code of
operation.

Functions Open and Close should configure interrupts of the peripheral device..

Department of Microelectronics and Computer Science

Embedded Systems

35

Drivers – Communication with DevicesDrivers – Communication with Devices

ReadData Device_Read () - function used for reading data from device, e.g. serial port. Read
function can be locked when waiting for data or can return information that data are not available.
Some functions use timeout timers – function lock for the defined period of time. If data are still not
available within this time, function finishes and returns suitable code. Processor timer can be used
for timeout measurement.

Read function can use interrupts or Direct Memory Access (DMA). I such case data are written to
data buffer and suitable flag is set or DMA transfer is triggered when enough data is in buffer.

Device_Write () - function used for writing data to hardware device, e.g. sending data using serial
port. Function can be also locked when transfer of data is not fished, e.g. transfer of 1 byte using
RS 232 interface with 9600 baudrate requires 1 ms. We can use interrupts, timeout timer or DMA
transfer to enhance data transfer.

Read and write functions can return results of operations, e.g. information that data was sent
correctly. In such a case after transmission, receiver can be activated to receive confirmation code
(depends on the used protocol). If data was not send successfully, transfer can be repeated

Department of Microelectronics and Computer Science

Embedded Systems

36

Drivers – Auxiliary FunctionsDrivers – Auxiliary Functions

DeviceStatus CheckStatus () - function used for checking device status, e.g. check Timer or UART
flag, check if device is active, etc... Status functions can be used by others driver functions or
applications, e.g. after writing data to transmitter, write function read status register (polling) to find
out when transfer will be finished.

Device_INT_Handler() - function or handler for interrupt(s) of peripheral device, e.g. handler for PIT
timer. Supplementary functions that allows to register, activate and deactivate interrupt(s) should be
also provided.

Device_WriteString () - function based on the basic write function can be created to send string of
characters (instead of single character). Function can use Device_Write() that sends or stores a
single character. Function can inherit locking properties from lower level function.

Department of Microelectronics and Computer Science

Embedded Systems

37

Drivers for exemplary Embedded System – layers (1)Drivers for exemplary Embedded System – layers (1)

First level driver

Second level driver Third level driver

Devices Initialization:
OpenPIT();

...
Main Loop

while (1) {
USART_Read();

… process data …
LCD_Write();

… process data …
Button_Menu();

… process data …

};
Interrupt_Handlers {

}

PIO

Timer PIT

USART

Ethernet

RTC

GPIO

LED 0..31

Button 0..5

LCD

Communication

Interrupt

Calendar

Delay_ms

Department of Microelectronics and Computer Science

Embedded Systems

38

Drivers for exemplary Embedded System - layers (2)Drivers for exemplary Embedded System - layers (2)

First level drivers:

PIO port driver (I/O),

Second level drivers (use first level drivers):

LED driver,

Keyboard driver,

LCD display driver,

GPIO ports driver,

 PIT Timer driver,

 USART interface driver,

 Ethernet interface driver,

 RTC clock driver.

 Third level drivers (use second level drivers):

Calendar driver.

Department of Microelectronics and Computer Science

Embedded Systems

39

Driver for Parallel I/O PortDriver for Parallel I/O Port

PIO_Struct* PIO_Open (unsigned int *RegistersPointer, unsigned int PortMask);

void PIO_Close (unsigned int *RegistersPointer, unsigned int PortMask);

unsigned int PIO_Read (PIO_Struct* PoiterToPIO);

void PIO_Write (PIO_Struct* PoiterToPIO, unsigned int Data);

unsigned int PIO_Status (PIO_Struct* PoiterToPIO);

Functions that return code of operation:

unsigned int PIO_Read (PIO_Struct* PoiterToPIO, unsigned int *ReadData);

unsigned int PIO_Write (PIO_Struct* PoiterToPIO, unsigred int *DataToSend);

unsigned int PIO_Status (PIO_Struct* PoiterToPIO, unsigned int *DeviceStatus);

Auxiliary functions:

void PIO_EnablePullUp (unsigned int *RegistersPointer, unsigned int PortMask);

void PIO_DisablePullUp (unsigned int *RegistersPointer, unsigned int PortMask);

unsigned int PIO_StatusPullUp (unsigned int *RegistersPointer, unsigned int PortMask);

Department of Microelectronics and Computer Science

Embedded Systems

40

Driver for Parallel I/O Port – Block Diagram of Output PathDriver for Parallel I/O Port – Block Diagram of Output Path

Pull-Up Enable Reg.

PIO Enable Reg.

Periph. A status Reg.

Output Enable Reg.

Set Output Data Reg.

Multi-driver
Enable Reg.
(OpenDrain)

100 k

Department of Microelectronics and Computer Science

Embedded Systems

41

Driver for Parallel I/O Port – Block Diagram of Input PathDriver for Parallel I/O Port – Block Diagram of Input Path

Pin Data Status Reg.

Interrupt Enable Reg.

Input Filter Diss. Reg.

Interrupt Status Reg.

Interrupt Mask Reg.

Department of Microelectronics and Computer Science

Embedded Systems

42

How to write good driver ?How to write good driver ?

1. Prepare structure that images peripheral device registers. Define constants for
masks and configuration parameters,

2. Reserve global flags (variables) that can be used for checking of device status,
e.g. check if device was already initialised, how many devices use driver,

3. Develop functions for communication with driver and API, e.g. (Open, Close,
Read, Write),

4. Develop handler for interrupt(s). The previous functions should definitely work
before interrupts are activated. In other case debugging will be much more difficult or
impossible.

Department of Microelectronics and Computer Science

Embedded Systems

43

Multi-timer driverMulti-timer driver

struct {
 TimerState Timer_State; /* current timer state */
 TimerType Timer_Type; /* current timer mode */
 unsigned int Timer_Length; /* length of delay - number of hardware timer ticks */
 unsigned int Timer_Count; /* number of ticks to expiere for each software timer */
 Timer * Timer_next; /* pointer to the next software timer */
} FirstTimer, *FirstTimer_;

TimerState = Active

TimerState = Active

Timer_State = Active

Timer_Type = OneShot

Timer_Counter = 10

Timer_Ticks = 1

Timer_Next = 0xfff540

TimerState = Active

TimerState = Active

Timer_State = Active

Timer_Type = OneShot

Timer_Length = 10

Timer_Count = 1

Timer_Next = 0xfff540

TimerState = Active

TimerState = Active

Timer_State = Active

Timer_Type = Periodic

Timer_Length = 20

Timer_Count = 17

Timer_Next = 0xfff540

TimerState = Active

TimerState = Active

Timer_State = Idle

Timer_Type = OneShot

Timer_Length = 220

Timer_Count = 0

Timer_Next = NULL

FirstTimer_

 Soft Timer nr 1 Soft Timer nr 2 Soft Timer nr 3

Hardware Timer generates Interrupts every 1 ms.
Software timers can be used for interrupts that are

multiples of 1 ms.
 Sorted list of timers

Department of Microelectronics and Computer Science

Embedded Systems

44

Example of Driver for TimerExample of Driver for Timer

enum TimerState {Idle, Active, Done};
enum TimerType {OneShot, Periodic};
typedef struct {
 TimerState Timer_State; /* current timer state */
 TimerType Timer_Type; /* current timer mode */
 unsigned int Timer_Length; /* length of delay - number of hardware timer ticks */
 unsigned int Timer_Count; /* number of ticks to expiere for each software timer */
 Timer * Timer_next; /* pointer to the next software timer */
} Timer, *Timer_;

int Timer_Open(Timer_ * TPoin) /* configure hardware and soft timer */
int Timer_Close(Timer_ * TPoin) /* release hardware or soft timer */
int Timer_Start(unsigned int miliseconds, TimerType Type, Timer_ * TPoin) /* start timer */
int Timer_Wait_For (Timer_ * TPoin)/* wait until timer fired */
void Timer_Cancel (Timer_ * TPoin) /* turn off software timer */

static void Timer_INT (void); /* hardware timer interrupt, e.g. 1 ms */

Department of Microelectronics and Computer Science

Embedded Systems

45

Functions of Software Timer (1)Functions of Software Timer (1)

int Timer_Start (unsigned int miliseconds, TimerType Type, Timer_ * TPoin){
 if (Tpoin->Timer_State != Idle)
 return -1;
 Tpoin->Timer_State = Active;
 Tpoin->Timer_Type = Type;
 Tpoin->Timer_Length = miliseconds / MSPERTICK; /* delay in ms */
 AddTimerToList (Tpoin); `/* add pointer to the previous timer structure */
 return 0;
}

void Timer_Cancel (Timer_ * TPoin){
 Tpoin->Timer_State = Idle;
 RemoveTimerFromList (Tpoin);

}

Department of Microelectronics and Computer Science

Embedded Systems

46

Functions of Software Timer (2)Functions of Software Timer (2)

int Timer_Wait_For (Timer_ * TPoin){
 if (Tpoin->Timer_State != Active)
 return -1;
 while (Tpoin->Timer_State != Done);
 if (Tpoin->Timer_Type = Periodic){
 Tpoin->Timer_State = Active;
 Tpoin->Timer_Count=Tpoin->TimerLength;
 }
 else
 {
 Tpoin->Timer_State = Idle;
 }
 return 0;
}

Department of Microelectronics and Computer Science

Embedded Systems

47

Interrupt Handler for Hardware TimerInterrupt Handler for Hardware Timer

static void Timer_INT (void){ /* hardware timer interrupt, e.g. 1 ms */

0. Hardware Timer (reinitialise each t = 1 ms, confirm interrupt, etc...)
1. Check list of active Timers,
2. Decrement Timer_Count,
3. If Timer_Count equal to 0 and TimerType = OneShot remove timer from list,
4. If Timer_Count equal to 0 and TimerType = Periodic reinitialise timer:
 Timer_Count = Timer_Length.
5. Modify flag for given timer (Timer_Fired) or generate software interrupt from
Timer.

}

Department of Microelectronics and Computer Science

Embedded Systems

48

Drivers in C++Drivers in C++

enum TimerState { Idle, Active, Done };
enum TimerType { OneShot, Periodic };
class Timer {
 public:
 Timer ();
 ~Timer ();

 int Start (unsigned int miliseconds, TimerType = OneShot);
 int Wait_For ();
 void Cancel ();

 TimerState State;
 TimerType Type;
 unsigned int Length;

 unsigned int Count;
 Timer * pNext;
 private:
 static void INT ();
};

Department of Microelectronics and Computer Science

Embedded Systems

49

Startup File

Department of Microelectronics and Computer Science

Embedded Systems

50

Structure of Startup File Structure of Startup File

Startup file code is executed by processor just after reset. The code is responsible for
configuration of basic peripheral devices and modules of processor.

Startup file is usually written in assembler because the code requires access to all processor
resources that cannot be accessed from higher level languages. The code is executed before
high level code (e.g. C/C++). Startup file is responsible for:

Allocation of memory and configuration of stack pointers for different modes of operation
(user, supervisor, IRQ, FIQ, etc...),

Configuration of memory (remap FLASH memory, activate SRAM/DRAM, clean memory),

Initialise exception vectors,

Copy of Operating System or application code to memory,

Initialise global variables in RAM (copy data from ROM, init variables with 0s),

Configure peripheral devices,

Initialise interrupt controller,

Change processor mode if required,

Call int main (void) function.

Department of Microelectronics and Computer Science

Embedded Systems

51

Structure of Startup File (2)Structure of Startup File (2)

RESET vector (address 0)

.section .text

reset_handler:

ldr pc, =_low_level_init

/* Initialization... */

_low_level_init:

_stack_init:

_init_data:

_init_bss:

_branch_main:

FLASH memory

Exceptions table

 startup file

SDRAM memory

0x0000.0000

0xFFFF.F000
Peripheral Devices

0x2000.0000

RAM memory
0x0030.0000

Department of Microelectronics and Computer Science

Embedded Systems

52

Structure of Startup File (3)Structure of Startup File (3)

Program in the main loop cannot be finished. Processor cannot execute return or
exit functions.
...
...
_branch_main:
 ldr r0, =main
 mov lr, pc
 bx r0

…
...
void main (int) {
 While (1)

{

 main program

 }
 return 0;
}

Department of Microelectronics and Computer Science

Embedded Systems

53

Structure of Startup File (4)Structure of Startup File (4)

Configuration of essential devices, required for processor operation:

Configuration of reference clock module (PLL). After reset processor operates
with “slow clock” (internal RC generator),

Configuration of memory controller (FLASH, RAM) – configure number of
WaitStates, base address,

Remap memory FLASH<->SRAM,

Configure Watch-Dog timer (after reset Watch-Dog is active),

Configure AIC module (assign default interrupt handlers),

Initialise stack pointers for different modes of operation (user, IRQ, FIQ,...),

Unblock NRST input (external reset).

Department of Microelectronics and Computer Science

Embedded Systems

54

Remapping of MemoryRemapping of Memory

Map of memory during reset

 RAM

 SRAM

 FLASH

0x0000.0000

0xFFFF.F000
Peripheral devices

FLASH

 SRAM

 FLASH

0x0000.0000

0xFFFF.F000
Peripheral devices

0x0030.0000

0x0060.0000

0x0030.0000

0x0060.0000

Map of memory after remap

Remapping of FLASH memory is performed after execution of startup code
(REMAP register)

Department of Microelectronics and Computer Science

Embedded Systems

55

Clock GeneratorClock Generator

Embeds the low-power 32768 Hz
Slow Clock Oscillator

Provides the permanent Slow
Clock SLCK to the system

Embeds the Main Oscillator

Oscillator bypass feature

Supports 3 to 20 MHz crystals

Embeds 2 PLLs

Output 80 to 240 MHz clocks

Integrates an input divider to
increase output accuracy

1 MHz Minimum input frequency

Department of Microelectronics and Computer Science

Embedded Systems

56

Configuration of Reference Clock – Chapter 28 (1)Configuration of Reference Clock – Chapter 28 (1)

After reset processor operates with slow clock with frequency f = 32768 Hz. Slow clock is always
active (generated by build-in RC generator).
After reset Phase Locked Loops (PLLs) are disabled.

Peripheral devices
and memories

ARM core

Department of Microelectronics and Computer Science

Embedded Systems

57

Generator with PLL (1)Generator with PLL (1)

Phase Locked Loop (PLL) – electronic circuit based on feedback used for
automatic regulation of generator frequency. PLL is used in frequency synthesisers,
heterodyne RF receivers, frequency sources and frequency multipliers.

PLL generator is composed of:

 Reference generator (quartz generator),

 Phase detector,

 Low pass filter,

 Voltage Controlled Oscillator (VCO),

 Feedback loop with suitable frequency divider.

Department of Microelectronics and Computer Science

Embedded Systems

58

Generator with PLL (2)Generator with PLL (2)

High frequency signal generated by VCO is connected to output (Fo). The same
signal is connected to divider (/N). The output of divider is connected to phase
detector (PD) and compared with stable reference signal. Phase difference of
reference signal and output signal divided by N is used to control VCO. Feedback
loop strive to obtain synchronous signals (phase error equal to 0). Low pass filter is
required to make the loop stable.

Department of Microelectronics and Computer Science

Embedded Systems

59

Configuration of Reference Clock (2)Configuration of Reference Clock (2)

Procedure to turn on PLL generator:
1. Turn on quartz generator. Wait until frequency will be stable (bit PMC_MOSCS).
2. Configure PLLA, f = 16 367 660*110/9 = ~200 MHz. After turning on PLLA wait until PPLA
will be stable (bit PMC_LOCKA) and frequency will be also stable (bit PMC_MCKRDY).
3. Switch processor to use PLLA (in example additional divider by 2), bit
AT91C_PMC_CSS_PLLA_CLK. Wait until frequency will be stable.

Konfiguracja PLLA:
 AT91C_BASE_PMC->
 PMC_PLLAR = AT91C_CKGR_SRCA | /* programming PLL */
 AT91C_CKGR_OUTA_2 | /* electrical parameters */
 (0x3F << 8) | /* counter = 63 */
 (AT91C_CKGR_MULA & (0x6D << 16)) | /* multiplier 109 */
 (AT91C_CKGR_DIVA & 9); /* divider 9 */
f ref = 16 367 660 Hz
fout = fref * (MULA+1) / DIVA = 16 MHz * 110 / 9 => 200 MHz
f
MCK

= fout / 2 => ~100 MHz

Department of Microelectronics and Computer Science

Embedded Systems

60

Analysis of lowlevel.c file

Department of Microelectronics and Computer Science

Embedded Systems

61

COFF vs ELFCOFF vs ELF

COFF (Common Object File Format) – specification of
format for executable, object code, and shared library computer
files used on Unix systems. COFF was introduced to substitute
old a.out format. COFF is used also on other platforms, e.g.
Windows. Currently, ELF standard is promoted instead of
COFF.

ELF (Executable and Linkable Format) – common
standard file format for executables, object code, shared
libraries, and core dumps used on different architectures, e.g.:
x86 family, PowerPC, OpenVMS, BeOS, PlayStation Portable,
PlayStation 2, PlayStation 3, Wii, Nintendo DS, GP2X,
AmigaOS 4 and Symbian OS v9.

Usufull tools:

readelf

elfdump

objdump

Źródłó: wikipedia

Department of Microelectronics and Computer Science

Embedded Systems

62

Compilation ProcessCompilation Process

1 phase – compilation of source files → relocable binary files

2 phase – linking of relocable files → relocable binary file

3 phase – generation of executable file (with assigned addresses)

1.

2.

3.

*.o

*.elf, *.bin

Department of Microelectronics and Computer Science

Embedded Systems

63

Linker ScriptLinker Script

/* elf32-littlearm.lds for ARM At91SAM9263 */
OUTPUT_FORMAT ("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH (arm)
ENTRY (reset_handler)
/*#include "project.h"*/

SECTIONS
{
 . = 0x1.0000; /* base address */
 .text : { (.text) } /* code section */
 . = 0x800.0000; /* base address */

 .data : { (.data) } /* initialized data */
 .bss : { *(.bss) } /* uninitialized data */
}

LED_test: $(OBJS)

$(LD) $(LDFLAGS) -Ttext 0x20000000 -Tdata 0x300000 -n -o $(OUTFILE_SDRAM).elf $
(OBJS)

Department of Microelectronics and Computer Science

Embedded Systems

64

MemoriesMemories

Department of Microelectronics and Computer Science

Embedded Systems

65

Embedded MemoriesEmbedded Memories

128 Kbyte ROM
Single Cycle Access at full matrix speed

One 80 Kbyte Fast SRAM
Single Cycle Access at full matrix speed

Supports ARM926EJ-S TCM interface at full processor speed

Allows internal Frame Buffer for up to 1/4 VGA 8 bpp screen

16 Kbyte Fast SRAM
Single Cycle Access at full matrix speed

Department of Microelectronics and Computer Science

Embedded Systems

66

Internal Memory MappingInternal Memory Mapping

Department of Microelectronics and Computer Science

Embedded Systems

67

Memory mapping #1Memory mapping #1

0x0030.0000 – internal SRAM

0x2000.0000 – external SDRAM (Chip select 1)

Department of Microelectronics and Computer Science

Embedded Systems

68

Memory mapping #2Memory mapping #2

Department of Microelectronics and Computer Science

Embedded Systems

69

Linker script for ARM AT91SAM9263 processorLinker script for ARM AT91SAM9263 processor

SECTIONS {
.text : {
 _stext = .;
 (.text) / program code */
 (.rodata) / read-only data (constants) */
 (.rodata)
 . = ALIGN(4);
 _etext = . ; }
/* all initialized .data that go into FLASH */
.data : AT (ADDR (.text) + SIZEOF (.text)) {
 _sdata = .;
 (.vectors) / vectors table */
 (.data) /* initialized data */
 _edata = .; }
/* all uninitialized .bss that go into FLASH */
.bss (NOLOAD) : {
 . = ALIGN(4);
 _sbss = .;
 (.bss) / uninitialized data */
 _ebss = .; } }
end = .;

CROSS_COMPILE=arm-elf-

LD=$(CROSS_COMPILE)gcc

LDFLAGS+=-nostartfiles -Wl,--cref

LDFLAGS+=-lc -lgcc

LDFLAGS+=-T elf32-littlearm.lds

OBJS = cstartup.o

OBJS+= lowlevel.o main.o

LED_test: $(OBJS)

$(LD) $(LDFLAGS) -Ttext 0x20000000

 -Tdata 0x300000 -n -o
$(OUTFILE_LED_test).elf $(OBJS)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69

