Embedded Systems -

Dariusz MakowsKki

Department of Microelectronics and

Computer Science
tel. 631 2720
dmakow@dmcs.pl
http://Ineo.dmcs.pl/es

% Department of Microelectronics and Computer Science 1

mailto:dmakow@dmcs.pl

4

4

4

Lecture Agenda

Embedded Systems

+ Methodology of Designing Embedded Systems

Department of Microelectronics and Computer Science

Embedded Systems
-

{23 Operating System

Operating System (OS) is a dedicated software for microprocessor-based
devices that manages hardware resources and provides environment for
applications.

OS is like an interface between hardware, applications and user:
+ Piece of software that sits between applications and hardware.
Hides hardware details from applications.

Provides standard interfaces to hardware and software devices.
Provides protection mechanisms.

Typical services:

@ Memory management (main memory, secondary memory, virtual memory,
paging, file system),

@ Process management (scheduling, task management, synchronization,
interrupt and exception handling, inter-task communication,

@ Input-Output management (device driver),
@ Support for distributed applications and multiprocessors.

4
>
>
4

@@ Department of Microelectronics and Computer Science 3

Systemy czasu rzeczywistego

Operating System (2)

We can distinguish three main layers of OS:

+ Kernel — manages system resources, hardware/software,
@ Kernel provides functions for tasks management:
+ Scheduling,
+ Dispatching,
¥+ Intercommunication and synchronisation,
+ Shell
@ provides user interface,
@ access to services of kernel,

+ File System — mechanisms for storing, organization, manipulation and
retrieval of data.

% Department of Microelectronics and Computer Science

Systemy czasu rzeczywistego -

PE?L Computers and software

Operating system Operating system
Hardware Hardware Hardware
Personal Computer Complex Embedded Simple Embedded
computer computer

Personal Computers, Universal Computers:

+ High level languages (Assembler, C/C++, Pascal, Java, Basic...)
Embedded systems, controllers:

+ Low level programming Assembler,

+ High level languages (C/C++, Basic, Ada).

% Department of Microelectronics and Computer Science 5

Systemy czasu rzeczywistego
of

L] Design goal of Embedded OS

Small: minimal memory footprint,

Open: many interfaces and protocols, open system standards,
Modular: easy to integrate custom components,

Portable: run on different devices,

Real-time: support of hard deadlines, bounded interrupts, scheduling,
synchronization,

¥ ¢ & ¢ ¢

Power consumption: integrated power management, mobile devices,
Robustness: fault tolerant, halts, guards, exceptions, CRC, ...
Configurable: adaptable to required functionality.

% Department of Microelectronics and Computer Science 7

Embedded Systems -

Do we really need Operating System for Embedded Devices ?

+ Monolithic kernel is too feature reach, requires significant processing
power, memory, etc...

+ Simple Embedded Systems can operate without OS — simpler design,
cost-effective solution.

+ Embedded Systems without OS allows to meet requirements of
Real-Time Operating System (RTOS).

+ Analysis and debugging is much simpler than usage of operating
system.

+ Significant amount of Embedded Systems requires only multitasking
functionality.

% Department of Microelectronics and Computer Science 8

Embedded Systems -

+ Multitasking is a method by which multiple processes (tasks) share
common processing resources (e.g. CPU).

+ Single CPU core can only execute single task.

+ CPU can be assigned to different tasks that are performed in different
time.

+ Multitasking allows to select one task that will obtain CPU while other
tasks are waiting.

+ The act of reassigning a CPU from one task to another one is called a
context switch.

+ When context switches occur frequently enough the illusion of
parallelism is achieved.

@1 Multitasking

% Department of Microelectronics and Computer Science 9

Embedded Systems -

Simple embedded system can work without operating system — we need only
executive with multitasking functionality.

+ Multitasking can be achieved with OS and even without operating system.
+ We can use simple infinite loop (pseudo-kernel).

+ Program can be divided into non-blocking functions tasks.

+ Tasks can be executed in turn.

Pseudo-kernel

Pseudo-kernels are usually implemented in Embedded Systems build with simple
microcontrollers with small resources (RAM and ROM).

Pseudo-kernels can be divided into two groups:
@ Systems based on infinite loop.
@ Systems triggered with interrupts

% Department of Microelectronics and Computer Science 11

L 4
4
4
L 4
>
4

i

Embedded Systems

3 Pooled Loop (1)

Used for fast response to single devices,

Single and repetitive instruction is used to test events (flags),

If the event has not occurred the next command (task) is executed,
Works well on single processor systems,

Overlapping of events is not allowed or minimized,

Usually implemented in systems as a background task, when interrupts are
available.

% Department of Microelectronics and Computer Science

12

Embedded Systems
G

L= Pooled Loop (2) — example

_branch_main:
ldr r0, =main
mov Ir, pc

void main (void) {

for (;;) [* execute program in infinite loop */
{
I* Task 1 */
if (data_available){ [* check if data received */
process_data(); /* make some calculations */
data_available = 0; [* clear flag and give processor time to other task */
}

if (event_2){
...do some work here...
}

[* Task 3 */
if (event_3){
...do some work here...
}

% Department of Microelectronics and Computer Science 13

Write

Embedded Systems -

a simple program for terminal device using pooled loop. The terminal device is

Exercise 1

equipped with LED matrix display, matrix keyboard, communication interface (e.g.
EIA RS 232) and sound generator.

The system should meets the following criteria:

4

4
4
4

Device should read data from keyboard,
Display information on the LED display,
Send data via serial interface,

Device should read command from serial interface (e.g. clear display, display
text, etc...),

Generate warning (sound) when error will be detected (error in transmission
or reading keyboard),

Interrupts not available.

Department of Microelectronics and Computer Science 14

Embedded Systems -

Cyclic Executives:
+ Run on non-interrupt driven systems,

+ Provides illusion of simultaneity,

+ Requires simple and short processes,

+ Tasks are executed according to Round-Robin algorithm,

+ |In the main loop one can use pointers to functions as a pointers to processes
(stored in the task table),

+ Intertask synchronisation and communication can be achieved through global

variables.

% Department of Microelectronics and Computer Science 15

Embedded Systems -

Cyclic Executives (2)

void main (void) {
for (;;) /* execute program in infinite loop */

{

Task_number_1();
Task_Number_3(); /* different rate structures can be achieved by repeating the
task in the list, e.g. task number there require 3 times more

processing power */
Task_Number_3();

Task_Number_3();

Task_Number_4();

}

Tasks cannot be executed in blocking mode. Single task can easily lock the whole
“operating system”.

% Department of Microelectronics and Computer Science 1 6

Embedded Systems -

Write a simple program using Cyclic Executives for 'Space Invaders' game.

How many tasks/processes are required?

Can we really write such a game using infinite loop ?

Available hardware:

* Three buttons:

A o I A @ Left/right, fire,

ottt * Sound generator.

= S B S S B S B B S S

S5 %2 O O N SN % U% U £ 2% @ Diver available, use beep
function.

+ LCD/VGA screen

@ Driver available, use only
update screen function.

_—EEEEE T EEE

)

)i

)]

I

CREDIT

17

% Department of Microelectronics and Computer Science

Systemy czasu rzeczywistego
[(o

PL Cyclic Executives - Space Invaders

void main (void) {

for (;;) [* execute program in infinite loop */
{
check for_keypressed(); /* check if keyboard pressed */
move_aliens(); /* move alien one line below */
check _for_keypressed();
check_for_collision(); /* computing collisions */
beep(); [* generate sound if required */
check for_keypressed();
update_screen(); [* single move done, update screen */
}

% Department of Microelectronics and Computer Science 18

Embedded Systems
&

14 Cyclic Executives (3)

+ Pointer to function can be used to call available tasks.

+ We can easily add new task — we only need to modify table with function pointers.

+ We can easily change order and frequency of called functions/tasks by manipulating
function pointers.

+ Tasks can be dispatched using interrupts.

+ Interrupt handler can save and restore context for available tasks.

Exercise 3:

+ Write a simple multitasking system able to execute max. 10 tasks.
+ Use table for storing function pointers.

% Department of Microelectronics and Computer Science 19

Embedded Systems -

Cyclic Executives (3) — function pointer

#define AVAILABLE_TASKS 10

void Task4(void){

return;

}
void main (void) {
void (*fp[AVAILABLE_TASKS])(void) = { , Task3, Task3, Task3, Task4, NULL};
int TaskNumber=0;
for (;;) [* execute program in infinite loop */
{
(*fp[TaskNumber++])();
if (fp[TaskNumber] == NULL) TaskNumber=0;
}
}

% Department of Microelectronics and Computer Science 20

Embedded Systems -

Pros and Cons of Polled Loop

Simple implementation, easy debugging,

Requires much less resources comparing to OS,

Well defined behaviour of the program (assuming that INT are not used),
No context switching required,

The order of executing task cannot be easily changed.

Main loop operates in locking mode, waste processor time for checking events
No support for asynchronous events,

Code must “tuned” by programmer,

-

-

+ Difficulty in adding new tasks,

-

+ Suitable for single processor systems with small amount of independent processes,
>

Inadequate for complex systems, especially with Ethernet support.

% Department of Microelectronics and Computer Science 21

Embedded Systems -

Cooperative Multitasking

Multiple tasks share processing resources (CPU).

Tasks cooperates in such a way that voluntarily cede time to each other, e.qg.
when one task is waiting for resources (data from RS232 port) processing power
is ceded to another task.

Tasks can be executed in main infinite loop.
+ Task dispatch can performed with break command or yield() function.

Example 1:

Three processes (process_A...process_C) are executed according to Round Robin algorithms.
No context switching is available, processes use common stack. Program starts with tasks
initialisation. Task switching realised in the main loop using break command.

Example 2:

Four tasks (taskO - task3) are executed according to R-R algorithm. Task switching is realised
with yield function. Each task has its own stack in common memory. After initialisation program
run outside main function (Program Counter is modified according to restored context).

% Department of Microelectronics and Computer Science 22

Embedded Systems -

Context switching can be realized using interrupts from hardware timer (e.g. PIT).

Multitasking with Interrupts

Timer provides time for task executing - quantum or timeslice. Quantum should
be slightly longer that typical reaction of the system, to have enough time to finish
most of the tasks and switch context (e.g. 10-100 ms).

+ Task are scheduled using interrupt controller. If only single interrupt is available,
interrupt handler is responsible for task scheduling and switching.

+ Tasks synchronisation can be realized with interrupt masking or application of
global semaphores.

% Department of Microelectronics and Computer Science 27

Embedded Systems -

void main (void) {

/[* initialise system, configure handlers of functions, init stack, etc...*/
init();
while(1); /* IDLE task */

}

[* Timer generates interrupts */
void int1 (void){

save(context); /* store context of the previous task */
restore(++context;) /* restore context of the current task */
task1(); [* execute task 1 */

}

void int2 (void){
save(context); [* store context of the previous task */
restore(++context;) [* restore context of the current task */
task2(); /* execute task 2 */

}

void int3 (void){
save(context); /* store context of the previous task */
restore(++context;) /* restore context of the current task */
task3(); /* execute task 3 */

}

% Department of Microelectronics and Computer Science 28

Embedded Systems -

11 Cooperative Multitasking with Timer Interrupt

void main (void) {
[*initialise system, configure handlers of functions, init stack, etc...*/

&

init_task1();
init_task2();
init_IRQ(); [* configure timer interrupt */
init_Timer(); /[* configure and start timer, timer period = timeslice */
TaskNumber = NUMBEROFTASKS; /* wait for first timer interrupt */
while(1); /* IDLE task */
}
void Task_1 (void){
task1(); [* execute code of task 1 */
yield(); /[* resource busy, switch to the next task */

}
void Task_2 (void){

task2(); /* execute code of task 2 */
yield(); /* resource busy, switch to the next task */

}
void yield (void){
) [* Trigger software interrupt for timer */

}
Void TimerHandler (void){
save(context[TaskNumber]); /* store context of the current task */
TaskNumber = (++TaskNumber) % NUMBEROFTASKS;
restore(context[TaskNumber]); /* restore context of the new task, recover PC*/
}

% Department of Microelectronics and Computer Science 29

Embedded Systems -

11 Cooperative Multitasking with Interrupts - Summary

 $

Pros:

+ Priority of tasks are assigned to interrupts priorities,

+ Timeslicing — processes are allowed to run in preemptive mode. Time slice or
quantum can be defined for cooperating tasks.

+ New tasks can be easily added.
Cons:

+ Priorities depends on interrupt controller or interrupt handler.

% Department of Microelectronics and Computer Science 30

Embedded Systems -

Drivers of Peripheral Devices

% Department of Microelectronics and Computer Science 3 1

Embedded Systems -

Drivers of Peripheral Devices (1)

Application layer

Kernel layer

« e
(Device A J ‘ Device B J Device C Hardware layer

" A - v

Device Driver — program responsible for communication between hardware device and software
programs or applications. Drivers are provided as collection of functions. Drivers are hardware-
dependent and operating-system-specific. Driver imitate some of hardware device features. Driver
functions names and returned values depends in the operating system (OS Application Programming
Interface). Direct access to hardware is restricted in case of OSs — device drivers should be always
used.

In case of Embedded Systems applications can communicate directly with hardware, sometimes it is
difficult to distinguish between drivers and applications. However, it is recommended to separate
application layer functions from hardware using simple device drivers.

% Department of Microelectronics and Computer Science 32

Embedded Systems
G

PL Drivers of Peripheral Devices (2)

Peripheral Device Driver (internal or external device) — provides basic functions that allow for easy
usage of the device.

Device driver allows to hide hardware device — it provides collection of functions for initialisation and
communication with device. Driver require also interrupt handler and functions for configuration of
interrupts.

Real Time
Application <«— Driver RTC1 <+—5 Clock

BQ3285

* Interrupt

Application

Interrupt

% Department of Microelectronics and Computer Science 33

Embedded Systems -

Drivers — Device Initialisation

Peripheral device driver — functions usually implemented:
Device_Open () - function used for device initialisation

Function can take parameters, e.g. driver controls more that one device, two USART transceivers.
Parameter can be used to calculate offset for device registers.

Function can return operation code or descriptor (pointer to structure describing device status,
device buffers, registers, etc...) to peripheral device.

A few different devices can open driver (dedicated for multioperations). Driver is equipped with
deviceCounter that tells how many devices are connected to driver. In such a case device
initialisation is performed only once.

Device_Close () - function called when application stop using device. Close function should
deactivate device in safe way, e.g. I/O - configure ports as inputs. USART — turn of f
transmitter/receiver, deactivate interrupts.

If function Open was called a few times, the device is used by a few applications, the Close function
decrements only deviceCounter and release semaphore. Device is disabled and resources are freed
when deviceCounter is equal to 0. Function Close can take parameters and returns code of
operation.

Functions Open and Close should configure interrupts of the peripheral device..

% Department of Microelectronics and Computer Science 34

Embedded Systems -

ReadData Device_Read () - function used for reading data from device, e.g. serial port. Read
function can be locked when waiting for data or can return information that data are not available.
Some functions use timeout timers — function lock for the defined period of time. If data are still not
available within this time, function finishes and returns suitable code. Processor timer can be used
for timeout measurement.

Drivers — Communication with Devices

Read function can use interrupts or Direct Memory Access (DMA). | such case data are written to
data buffer and suitable flag is set or DMA transfer is triggered when enough data is in buffer.

Device_Write () - function used for writing data to hardware device, e.g. sending data using serial
port. Function can be also locked when transfer of data is not fished, e.g. transfer of 1 byte using
RS 232 interface with 9600 baudrate requires 1 ms. We can use interrupts, timeout timer or DMA
transfer to enhance data transfer.

Read and write functions can return results of operations, e.g. information that data was sent
correctly. In such a case after transmission, receiver can be activated to receive confirmation code
(depends on the used protocol). If data was not send successfully, transfer can be repeated

% Department of Microelectronics and Computer Science 35

Embedded Systems -

DeviceStatus CheckStatus () - function used for checking device status, e.g. check Timer or UART
flag, check if device is active, etc... Status functions can be used by others driver functions or
applications, e.g. after writing data to transmitter, write function read status register (polling) to find
out when transfer will be finished.

1 Drivers — Auxiliary Functions

Device_INT_Handler() - function or handler for interrupt(s) of peripheral device, e.g. handler for PIT
timer. Supplementary functions that allows to register, activate and deactivate interrupt(s) should be
also provided.

Device_WriteString () - function based on the basic write function can be created to send string of
characters (instead of single character). Function can use Device_Write() that sends or stores a
single character. Function can inherit locking properties from lower level function.

% Department of Microelectronics and Computer Science 36

Embedded Systems -

Drivers for exemplary Embedded System — layers (1)

Devi e e e » LED 0..31 >
evices Initialization:
OpenPIT(); <+— Button 0.5 <*—
D P10 — >
Main Loop GPIO
— LCD —>
while (1) {
USART_Read(); ~<— Timer PIT I—> Delay _ms
... process data ...
'—CD_W”;G?; Communication
... process data ... —
Button_Menu(); DR USART I<
... process data ...
}; — >
Interrupt_Handlers { < ELUsie B
} —>
| RTC Calendar

First level driver

Second level driver Third level driver

@@ Department of Microelectronics and Computer Science 3 7

Drivers for exemp

First level drivers:
= PIO port driver (1/0),

Embedded Systems

lary Embedded System - layers (2)

Second level drivers (use first level drivers):

- |ED driver,

- Keyboard driver,

= |LCD display driver,
-+ GPIO ports driver,
= PIT Timer driver,

-+ USART interface driver,
- Ethernet interface driver,

-+ RTC clock driver.
Third level drivers (use
- Calendar driver.

second level drivers):

Department of Microelectronics and Computer Science

38

Embedded Systems

Driver for Parallel /O Port

P1O_Struct* PIO_Open (unsigned int *RegistersPointer, unsigned int PortMask);
void PIO_Close (unsigned int *RegistersPointer, unsigned int PortMask);
unsigned int PIO_Read (P1O_Struct* PoiterToPI1O);

void PIO_Write (PIO_Struct* PoiterToPIO, unsigned int Data);

unsigned int PIO_Status (PIO_Struct* PoiterToPIO);

Functions that return code of operation:

unsigned int PIO_Read (PIO_Struct* PoiterToPIlO, unsigned int *ReadData);
unsigned int PIO_Write (PIO_Struct* PoiterToPIO, unsigred int *DataToSend);
unsigned int PIO_Status (PIO_Struct* PoiterToPIO, unsigned int *DeviceStatus);

Auxiliary functions:

void PIO_EnablePullUp (unsigned int *RegistersPointer, unsigned int PortMask);

void PIO_DisablePullUp (unsigned int *RegistersPointer, unsigned int PortMask);
unsigned int PIO_StatusPullUp (unsigned int *RegistersPointer, unsigned int PortMask);

% Department of Microelectronics and Computer Science

39

Embedded Systems

Driver for Parallel I/O Port — Block Diagram of Output Path

Figure 31-3. 1/O Line Control Logic
pio_oerp | Qutput Enable Reg. Pull-Up Enable Reg.
PIO_QOSRI[0] _
PIC_ODR[0] PIO_PUER]0]
_ PIO_PUSR[0] —1= 100 k
Periph. A status Reg. 1 PIO_PUDRIO]
Peripheral A
Qutput Enable N)
0
Peripheral B /] PR
Enable Reg.
PIO_ASR[0] PIO_PERI0] (OpenDrain)
PIO_ABSRI0Q] PIO_PSR[0] [}
PIO_BSR[0] PIO_PDRI[0] PIO_MDER[0]
Peripheral A 0 PIO_MDSR[0] |+
Output }W PIO_MDDRI0]
. N
Peripheral B Q 0
Output ¥ PIO_SODR[0] y W N —
PIO_ODSR[0] —ra
PIO_CQDRI0]) I//
Set Output Data Reg. =
% Department of Microelectronics and Computer Science 40

Embedded Systems -

Driver for Parallel I/O Port — Block Diagram of Input Path
>

L
) Peripheral A
Pin Data Status Reg. Interrupt Status Reg. nput
Peripheral B
| Pio_posrio] || Pio_isrio] | — Input
N Up to 32 ible input
Edge (Up to possible inputs)
. Detector
Glitch 1 P1O Interrupt
Filter
| Pio_IFER[0] |
| Pio_iFsRio] [Fio_ER0] |
|_PIO_IFDRI0] | | Pio_mro;
Input Filter Diss. Reg. [PioioRio) |
| Pio_isR31] |—
Interrupt Enable Reg. [rio_iera1 | :D_
PIO_IMR[31] |—
Interrupt Mask Reg. PIo_IDRGT] |

% Department of Microelectronics and Computer Science 4 1

Embedded Systems -

1. Prepare structure that images peripheral device registers. Define constants for
masks and configuration parameters,

How to write good driver ?

2. Reserve global flags (variables) that can be used for checking of device status,
e.g. check if device was already initialised, how many devices use driver,

3. Develop functions for communication with driver and API, e.g. (Open, Close,
Read, Write),

4. Develop handler for interrupt(s). The previous functions should definitely work
before interrupts are activated. In other case debugging will be much more difficult or
impossible.

% Department of Microelectronics and Computer Science 42

Multi-timer driver

struct {
TimerState Timer_State;
TimerType Timer_Type;
unsigned int Timer_Length;
unsigned int Timer_Count;
Timer * Timer_next;

} FirstTimer, *FirstTimer_;

[* current timer state */
[* current timer mode */

Embedded Systems

/* length of delay - number of hardware timer ticks */
/* number of ticks to expiere for each software timer */

/* pointer to the next software timer */

Sorted list of timers

Hardware Timer generates Interrupts every 1 ms.
Software timers can be used for interrupts that are
multiples of 1 ms.

Timer_State = Active

Timer_Type = OneShot

Timer_Length =10

Timer_Count = 1

Timer_Next = 0xfff540

Soft Timer nr1

—» Timer_State = Active

Timer_Type = Periodic

Timer_State = Idle

Timer_Length =20

Timer_Type = OneShot

Timer_Count =17

Timer_Length = 220

Timer_Next = 0xfff540

Timer_Count=10

Soft Timer nr 2

Timer_Next = NULL

Soft Timer nr3

% Department of Microelectronics and Computer Science

43

Embedded Systems -

Example of Driver for Timer

enum TimerState {Idle, Active, Done};
enum TimerType {OneShot, Periodic};

typedef struct {
TimerState Timer_State; [* current timer state */
TimerType Timer_Type; [* current timer mode */
unsigned int Timer_Length; /* length of delay - number of hardware timer ticks */
unsigned int Timer_Count; [* number of ticks to expiere for each software timer */
Timer * Timer_next; [* pointer to the next software timer */

} Timer, *Timer_;

int Timer_Open(Timer_ * TPoin) [* configure hardware and soft timer */

int Timer_Close(Timer_ * TPoin) /* release hardware or soft timer */

int Timer_Start(unsigned int miliseconds, TimerType Type, Timer_ * TPoin) /* start timer */
int Timer_Wait_For (Timer_ * TPoin)/* wait until timer fired */
void Timer_Cancel (Timer_ * TPoin) [* turn off software timer */

static void Timer INT (void); [* hardware timer interrupt, e.g. 1 ms */

% Department of Microelectronics and Computer Science 44

Embedded Systems -

int Timer_Start (unsigned int miliseconds, TimerType Type, Timer_ * TPoin){
if (Tpoin->Timer_State != Idle)
return -1;
Tpoin->Timer_State = Active;
Tpoin->Timer_Type = Type;
Tpoin->Timer_Length = miliseconds / MSPERTICK; /* delay in ms */
AddTimerToList (Tpoin); ‘[* add pointer to the previous timer structure */
return O;

}

Functions of Software Timer (1)

void Timer_Cancel (Timer_ * TPoin){
Tpoin->Timer_State = Idle;
RemoveTimerFromList (Tpoin);

% Department of Microelectronics and Computer Science 45

Embedded Systems -

int Timer_Wait_For (Timer_ * TPoin){
if (Tpoin->Timer_State != Active)
return -1;
while (Tpoin->Timer_State != Done);
if (Tpoin->Timer_Type = Periodic){
Tpoin->Timer_State = Active;
Tpoin->Timer_Count=Tpoin->TimerLength;

}

else

{
}

return O;

Tpoin->Timer_State = Idle;

% Department of Microelectronics and Computer Science 46

Embedded Systems -

static void Timer_INT (void){ [* hardware timer interrupt, e.g. 1 ms */

-',..L Interrupt Handler for Hardware Timer

0. Hardware Timer (reinitialise each t = 1 ms, confirm interrupt, etc...)

1. Check list of active Timers,

2. Decrement Timer_Count,

3. If Timer_Count equal to 0 and TimerType = OneShot remove timer from list,

4. If Timer_Count equal to 0 and TimerType = Periodic reinitialise timer:
Timer_Count = Timer_Length.

5. Modify flag for given timer (Timer_Fired) or generate software interrupt from
Timer.

% Department of Microelectronics and Computer Science 47

Embedded Systems
G

PL Drivers in C++

enum TimerState { Idle, Active, Done };
enum TimerType { OneShot, Periodic };
class Timer {
public:
Timer ();
~Timer ();

int Start (unsigned int miliseconds, TimerType = OneShot);
int Wait_For ();
void Cancel ();

TimerState State;
TimerType Type;
unsigned int Length;

unsigned int Count;

Timer * pNext;
private:

static void INT ();

% Department of Microelectronics and Computer Science 48

Embedded Systems -

Startup File

% Department of Microelectronics and Computer Science 49

Embedded Systems -

Startup file code is executed by processor just after reset. The code is responsible for
configuration of basic peripheral devices and modules of processor.

Startup file is usually written in assembler because the code requires access to all processor
resources that cannot be accessed from higher level languages. The code is executed before
high level code (e.g. C/C++). Startup file is responsible for:

¥+ Allocation of memory and configuration of stack pointers for different modes of operation
(user, supervisor, IRQ, FIQ, etc...),

Configuration of memory (remap FLASH memory, activate SRAM/DRAM, clean memory),
Initialise exception vectors,

Copy of Operating System or application code to memory,

Initialise global variables in RAM (copy data from ROM, init variables with 0s),

Configure peripheral devices,

Initialise interrupt controller,

Change processor mode if required,

¥ & & ¥ & & ¢ ¢

Call int main (void) function.

% Department of Microelectronics and Computer Science 50

Embedded Systems -

l Structure of Startup File (2)

RESET vector (address 0) 0x0000.0000
.section .text

reset _handler:

Ildr pc, = low_level init

Exceptions table
I* Initialization... */
_low_level_init: startup file

-
_stack_init: 0x0030.0000
_init_data:
_init_bss: 0x2000.0000 _
_branch_main: OxFEEEFO00 b

% Department of Microelectronics and Computer Science 5 1

Embedded Systems -

Program in the main loop cannot be finished. Processor cannot execute return or
exit functions.

PL Structure of Startup File (3)

_branch_main:
|dr r0, =main
mov Ir, pc
bx r0

;/.c.)id main (int) {
While (1)
{

main program

% Department of Microelectronics and Computer Science 52

Embedded Systems -

Configuration of essential devices, required for processor operation:

{..L Structure of Startup File (4)

+ Configuration of reference clock module (PLL). After reset processor operates
with “slow clock” (internal RC generator),

L 4

Configuration of memory controller (FLASH, RAM) — configure number of
WaitStates, base address,

Remap memory FLASH<->SRAM,

Configure Watch-Dog timer (after reset Watch-Dog is active),

Configure AIC module (assign default interrupt handlers),

Initialise stack pointers for different modes of operation (user, IRQ, FIQ,...),
Unblock NRST input (external reset).

¥ ¢ & ¢ <&

% Department of Microelectronics and Computer Science 53

Embedded Systems
=

{2 Remapping of Memory

Map of memory during reset Map of memory after remap
0x0000.0000 0x0000.0000
FLASH R RAM -
0x0030.0000 0x0030.0000
SRAM SRAM
0x0060.0000 0x0060.0000
FLASH FLASH
OxFFFF.FOOO OxFFFF.FOOO
Peripheral devices Peripheral devices

Remapping of FLASH memory is performed after execution of startup code
(REMAP register)

% Department of Microelectronics and Computer Science 54

Embedded Systems
—

PL Clock Generator

+ Embeds the low-power 32768 Hz

Slow Clock Oscillator Clock Generator
+ Provides the permanent Slow XIN32 Slow Clock Slow Clock
Clock SLCK to the system Oscillator > SLCK
. . XOuT32
+ Embeds the Main Oscillator
+ Oscillator bypass feature XIN Main | | Main Clock
Oscillator MAINCK
+ Supports 3 to 20 MHz crystals XOUuT
+ Embeds 2 PLLs
@ PLL and _ PLLA Clock
+ Output 80 to 240 MHz clocks PLLRCA Divider A ~ PLLACK
+ [ntegrates an input divider to
: —| PLL and . PLLB Clock
Increase output accuracy PLLRCB Divider B > DLLRCK
+ 1 MHz Minimum input frequency

| status 1 control

Power
Management
Controller

% Department of Microelectronics and Computer Science 55

Embedded Systems -

After reset processor operates with slow clock with frequency f = 32768 Hz. Slow clock is always
active (generated by build-in RC generator).

After reset Phase Locked Loops (PLLs) are disabled.

MAINCK ® Divider B > PLLB N

PLLRCB ﬁ
VLA

PLLBCK

Divider A > PLL A PLLACK
PLLRCA ﬁ
PMC_MCKR PMC_MCKR
| PRES | PMC_MCKR
MDIV
SLCK . .
MAINCK Master Perlphera| deV|CeS
Master Clock | Clock MCK
Prescaler 7 10c d ;
PLLACK Divider an memaories
PLLBCK

To the Processor
Clock Controller (PCK) ARM core

% Department of Microelectronics and Computer Science 56

',

Embedded Systems -

i1 Generator with PLL (1)

Phase Locked Loop (PLL) — electronic circuit based on feedback used for
automatic regulation of generator frequency. PLL is used in frequency synthesisers,
heterodyne RF receivers, frequency sources and frequency multipliers.

PLL generator is composed of:

=

=

=+

Reference generator (quartz generator),
Phase detector,

Low pass filter,

Voltage Controlled Oscillator (VCO),
Feedback loop with suitable frequency divider.

% Department of Microelectronics and Computer Science 57

Embedded Systems -

|=| ’ Phase > Charge Loww-pass

— fr; gtgipncry | PHTE flter

D
: Bias) Voltage e
generator cu:unt_rn:ulleu:l —P comerer *FG
oscillatar ,
VCO

High frequency signal generated by VCO is connected to output (Fo). The same
signal is connected to divider (/N). The output of divider is connected to phase
detector (PD) and compared with stable reference signal. Phase difference of
reference signal and output signal divided by N is used to control VCO. Feedback
loop strive to obtain synchronous signals (phase error equal to 0). Low pass filter is
required to make the loop stable.

% Department of Microelectronics and Computer Science 58

Embedded Systems -

Configuration of Reference Clock (2)

Procedure to turn on PLL generator:
1. Turn on quartz generator. Wait until frequency will be stable (bit PMC_MOSCS).

2. Configure PLLA, f =16 367 660*110/9 = ~200 MHz. After turning on PLLA wait until PPLA
will be stable (bit PMC_LOCKA) and frequency will be also stable (bit PMC_MCKRDY).

3. Switch processor to use PLLA (in example additional divider by 2), bit
AT91C _PMC_CSS PLLA CLK. Wait until frequency will be stable.

Konfiguracja PLLA:

AT91C_BASE_PMC->
PMC PLLAR =AT91C_CKGR_SRCA | [* programming PLL */
AT91C_CKGR_OUTA 2 | [* electrical parameters */
(Ox3F << 8) | [* counter = 63 */
(AT91C_CKGR_MULA & (0x6D << 16)) | [* multiplier 109 */
(AT91C_CKGR_DIVA & 9); [* divider 9 */

fref =16 367 660 Hz

fout = fref * (MULA+1) / DIVA =16 MHz * 110 / 9 => 200 MHz

f = fout/2=>~100 MHz

% Department of Microelectronics and Computer Science 59

Embedded Systems -

Analysis of lowlevel.c file

% Department of Microelectronics and Computer Science 60

Embedded Systems -

@ COFF (Common Object File Format) — specification of
format for executable, object code, and shared library computer
files used on Unix systems. COFF was introduced to substitute
old a.out format. COFF is used also on other platforms, e.g.
Windows. Currently, ELF standard is promoted instead of
COFF.

@ ELF (Executable and Linkable Format) - common
standard file format for executables, object code, shared
libraries, and core dumps used on different architectures, e.g.:
x86 family, PowerPC, OpenVMS, BeOS, PlayStation Portable,
PlayStation 2, PlayStation 3, Wii, Nintendo DS, GP2X,
AmigaOS 4 and Symbian OS v9.

@ Usufull tools:

& COFF vs ELF

ELF header

Program header table

text

rodata

= readelf L (data
= elfdump
= objdump Section header table

Zrédté: wikipedia

% Department of Microelectronics and Computer Science 61

Embedded Systems

L Compilation Process
C/C++ C/C++ Assembly
Y i ¥
1 (" Compiler) (Compiler) (Assembler)
) \ v Y
Object Object Object
| ” |
w| Linker |
v
2 Relocatahle *.O
3. Executable *_elf, * bin

+ 1 phase — compilation of source files — relocable binary files
+ 2 phase - linking of relocable files — relocable binary file
+ 3 phase — generation of executable file (with assigned addresses)

% Department of Microelectronics and Computer Science

Embedded Systems -

Linker Script

/* elf32-littlearm.lds for ARM At91SAM9263 */

OUTPUT_FORMAT ("elf32-littlearm", "elf32-littlearm”, "elf32-littlearm")
OUTPUT_ARCH (arm)

ENTRY (reset_handler)

[*#include "project.n"*/

SECTIONS
{

. = 0x1.0000; [* base address */
text: { (.text) } [* code section */

. = 0x800.0000; [* base address */
.data : {(.data) } [* initialized data */
bss : { *(.bss) } [* uninitialized data */

}

LED test: $(OBJS)

$(LD) $(LDFLAGS) -Ttext 0x20000000 -Tdata 0x300000 -n -0 $(OUTFILE_SDRAM).elf $
(OBJS)

% Department of Microelectronics and Computer Science 63

Memories

Embedded Systems

~l_
&L
&
< Q
o, ;
@ A=
Q O <,
9, SO Ok T IO e
MASTER m— S| AVE N s SN & @OO {4%2'~“ <
& & LN, SRR FEE ETOLS F v @
LohSs & QEIRTS FRIF SESEFENTN TS
Wl Pl SRR R R D A
TST —>| CSyslterI? | JTAG Boundary Scan P ¢ lranse |Tram:C
ontroller
L. 9528 TITT | TI10f [TJTTT111]
FIQ <— AIC _Cireui CompactFlash
IRQO-IRQ] | In-Circuit | ARM926EJ-S Processor LCD 10/100 Ethernet NAND Flash
Emulator ETM Controller MAC usB
DRXD <—s] DBGU OHCI
DTXD === ICache MMU DCache
CKO-POKS < TCM Interface 16K bytes 16K bytes I LUT II F”:OI I FIFDI IFIFOI
; o Bus Interface
PMC ITCM DTCM DMA DMA DMA
PLLRCA —| PLLA l l I lD SDRAM
PLLRCB —*| PLLB A y Controller
vot 1 osc Fast SRAM " :
80 Kbytes || Static
| wor || eir 9-layer Bus Matrix Memory
Controller
VDDCORE
voon — > T[mcreee]
XINa2 RTTO A Controller
—| osc v A A 4
XOUTS2 <— RTTH | PIOB |
—l DMA
SRAM
SHDN PIOC
WKUP HDWC 16 Kbytes Peripheral 20-channel
' - - 2D
Brid 2-channel
lge Peripheral .
POR faTe DMA DMA Graphics EBI1
= Controller
VDDCORE——FoR PIOE NAND Flash
NRST
| I APB SDRAM
’ * ‘ ‘ ; * ‘ Controller
PDC [Poc]| [Poc] pMA Static
Memory
MCI0 Wi USARTO CAN SPI0 pwmc|| Tco || Acerc sSC0 usB Image Controller
MCI1 USART1 SPI1 TC1 SSC D;""fe Sensor
USART2 TC2 or
Interface ECC
Controller
| - L

0D & Fok LA o
ST S LIS 5
o) X (aPint (S PAs] [N)
& SIS
MClo_, Mcl_1 O Ten

N
S D R
O S P87
RS R
< el

EBIO_
DO-D15
AO/NBSO
A1/NBS2/NWR2
A2-A15, A1B-A20
A16/BAD
A17/BA1
NCS0
NCS1/SDCS
NRD
NWRO/NWE
NWR1/NBS1
NWR3/NBS3
SDCK, SDCKE
RAS, CAS
SDWE, SDA10
NANDOE, NANDWI
A21/NANDALE
A22/NANDCLE

NWAIT
A23-A24
NCS4/CFCS0
NCS5/CFCSA
NCS3/NANDCS
A25/CFRNW
CFCE1-CFCE2
D16-D31

NCS2

po-pt1s EBI-
AO/NBSO
A1/NWR2
A2-A15/A18-A20
A16/BAO

A17/BA1

NCS0

NRD

NWRO/NWE
NWR1/NBSH

SDCK
AZ1/NANDALE
A22/NANDCLE
NWAIT
NWR3/NBS3
NCS1/SDCS
NCS2/NANDCS
D16-D31

SDCKE

RAS, CAS

SDWE, SDA10
NANDOE, NANDWI

Embedded Systems -

,L Embedded Memories

128 Kbyte ROM

+ Single Cycle Access at full matrix speed
One 80 Kbyte Fast SRAM

+ Single Cycle Access at full matrix speed

+ Supports ARM926EJ-S TCM interface at full processor speed
+ Allows internal Frame Buffer for up to 1/4 VGA 8 bpp screen

16 Kbyte Fast SRAM
+ Single Cycle Access at full matrix speed

% Department of Microelectronics and Computer Science 65

Embedded Systems
Internal Memory Mapping
Internal Memory Mapping
REMAP =0 REMAP =1
Address BMS =1 BMS =0
0x0000 0000 ROM EBIO_NCSO SRAM C
Internal SRAM Block Size
Internal SRAM A (ITCM) Size
Internal SRAM C 0 16 Kbytes 32 Kbytes
Internal SRAM B 0 80 Kbytes 64 Kbytes 48 Kbytes
(DTCM) size 16 Kbytes 64 Kbytes 48 Kbytes 32 Kbytes
32 Kbytes 48 Kbytes 32 Kbytes 16 Kbytes

Department of Microelectronics and Computer Science

66

Embedded Systems

Memory mapping #1

+ 0x0030.0000 — internal SRAM
+ 0x2000.0000 — external SDRAM (Chip select 1)

AT91SAM9263 Memory Mapping

Address Memory Space Internal Memory Mapping

0X0000 0000 Notes:
0x0000 0000 Boot Memory (1) (1) Can be ROM, EBIO_NCSO0 or SRAM
_ 0X0010 0000 depending on BMS and REMAP
Internal Memories | 256M Bytes ITCM (2) (2) Software programmable
OXOFFF FFFF 0X0020 0000
0x1000 0000 oreMe
EBIO sseM By 0x0030 0000 SRAM (2)
P es
Chlp Select 0 0x0040 0000
0x1FFF FEFF oM
0x2000 0000 0X0050 0000
EBIO 16K SRAMO
Chip Select 1/ 256M Bytes 0X0060 0000
oo e | EBIO SDRAMC Reserved
0X0070 0000
0x3000 0000 LCD Controller
EBIO 0x0080 0000
Chip Select2 | 256M Bytes DMAG
OX3FFF FEFF 0X0090 0000
0x4000 0000 Reserved
EBIO 0X00AO 0000
Chip Select 3/ 256M Bytes USB HOST
OX4FFF FFFF NANDFlaoh PH0080 0000
0x5000 0000 EBI0 Aosorved

Department of Microelectronics and Computer Science

67

Memory mapping #2

OXSFFF FFFF
0x6000 0000

OX6FFF FFFF
0x7000 0000

OXTFFF FFFF
0x8000 0000

OXBFFF FFFF
0x9000 0000

OXOFFF FFFF
0xAQ0O 0000

OXEFFF FFFF
0xF000 0000

OXFFFF FFFF

[=4=]|V}
Chip Select 4/
Compact Flash

Slot 0

EBIlo
Chip Select 5/
Compact Flash
Slot 1

EBI1
Chip Select 0

EBI1
Chip Select 1/
EBI1 SDRAMC

EBI
Chip Select 2/
NANDFlash

Undefined
(Abort)

Internal Peripherals

256M Byltes

256M Bytes

256M Bytes

256M Byles

256M Byles

1,280M Bytes

256M Bytes

0OxF000 0000

OxFFF7 8000

0xFFF7 CO00

OxFFF8 0000

OxFFF8& 4000

OxFFF8 8000

0xFFF8 C000

OxFFF9 0000

0xFFF9 4000

0xFFF9 8000

0xFFF9 C0O00

OxFFFA 0000

0xFFFA 4000

OxFFFA 8000

0xFFFA C000

OxFFFB 0000

OxFFFB 8000

0xFFFB C000

0xFFFC 0000

O0xFFFC 4000

0xFFFC 8000

0xFFFC G000

OxFFFF C000

OXFFFF FFFF

Peripheral Mapping

Reserved

ubDpP

TCO, TC1, TC2

MCIO

McH

™I

USARTO

USART1

USART2

S5C0

§58C1

ACO7C

SPIO

SPI

CANO

Reserved

PWMC

EMAC

Reserved

ISl

2DGE

Reserved

SYSC

16K Byles
16K Byles
16K Byles
16K Bytes
16K Bytes
16K Bytes
16K Bytes
16K Bytes
16K Byles
16K Byles
16K Byles
16K Byles
16K Bytes
16K Bytes

16K Bytes

16K Byles
16K Bytes
16K Byles
16K Byles

16K Bytes

—

16K Bytes

Embedded Systems

System Controller Mapping

OxFFFF C000

OxFFFF E000

0xFFFF E200

O0xFFFF E400

0xFFFF E600

0xFFFF E800

OxFFFF EAQO

OxFFFF EC00
OxFFFF ED10

O0xFFFF EE0Q

OXFFFF FO00

OXFFFF F200

OXFFFF F400

OXFFFF F600

OXFFFF F800

OxFFFF FAOO

OXFFFF FCOO
OXFFFF FDOO

OXFFFF FD10
OXFFFF FD20

OXFFFF FD30
OXFFFF FD40

OXFFFF FD50
OXFFFF FD6O

0xFFFF FDBO

———— OXFFFFFFFF

Reserved

ECCO

SDRAMCO

SMCO

ECC1

SDRAMC1

SMC1

MATRIX

PIOA

PIOB

PIOC

PIOD

PIOE

PMC

RSTC

SHDWC

RTTO

PIT

WDT

RTT1

GPBR

Reserved

512 Bytes
512 Bytes
512 Bytes
512 bytes
512 Bytes

512 Bytes

512 Bytes

512 Bytes
512 bytes
512 bytes
512 Bytes
512 bytes
512 bytes
512 bytes

256 Bytes
16 Byles
16 Bytes
16 Bytes
16 Bytes
16 Bytes
16 Bytes

80 Bytes

Department of Microelectronics and Computer Science

68

Embedded Systems -

Linker script for ARM AT91SAM9263 processor

StE(iﬂ?NS { CROSS COMPILE=arm-elf-
text :
_stext = .; LD=$(CROSS_COMPILE)gcc

(.text) / program code */ LDFLAGS+=-nostartfiles -WI,--cref
(.rodata) / read-only data (constants) */ LDFLAGS+=-Ic -Igcc
*(.rodata™)

= ALlGN(4), LDFLAGS+=-T elf32-littlearm.lds
_etext=.;} OBJS = cstartup.o
/* all initialized .data that go into FLASH */ OBJS+= lowlevel.o main.o
.data : AT (ADDR (.text) + SIZEOF (.text)) {
_sdata = ;
(.vectors) / vectors table */ LED test: $(OBJS)
. t(-data}) [* initialized data */ $(LD) $(LDFLAGS) -Ttext 0x20000000
edata = .;

-Tdata 0x300000 -n -0

/* all uninitialized .bss that go into FLASH */ $(OUTFILE_LED_test).elf $(OBJS)

.bss (NOLOAD) : {
. =ALIGN(4);
_Sbss = ;
(.bss) / uninitialized data */
_ebss=.}}
end = ;

% Department of Microelectronics and Computer Science 69

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69

