Electronic Technology Design and Workshop

ETDW course road map

\checkmark Schematic edition, libraries of elements
\checkmark Circuit simulation \& netlist generation
\checkmark Microelectronics - full custom design and simulation
\checkmark Microelectronics - simple layout synthesis
\checkmark Hardware description languages - behavioural description
\checkmark Logic \& sequential synthesis - programmable logic devices
\checkmark PCB design - auto-routing

䀬 Project - bringing the pieces together

Electronic Technology Design and Workshop

Lecture 3

Electronic circuit analysis
The SPICE - behind the GUI

Circuit scheme

Fundamental branch

Fundamental branch consist of:

- Voltage source
- Current source
- Impedance

4
Technical University of Loorz
Department of Microelectronics and Computer Sciences

Electronic Technology Design and Workshop
Network Graph - circuit topology

Notice that all branches are oriented !

- Nodes: N0, N1, N2
- Branches: b1, b2, b3, b4
- Nodal voltages: $\mathbf{V}_{\mathrm{N} 1}, \mathbf{V}_{\mathrm{N} 2}$
- Branch Voltages: $\mathbf{V}_{\mathrm{b} 1}, \mathbf{V}_{\mathrm{b} 2}, \mathbf{V}_{\mathrm{b} 3}, \mathbf{V}_{\mathrm{b} 4}$
- Branch Currents $\mathbf{I}_{\mathrm{b} 1}, \mathbf{I}_{\mathrm{b} 2}, \mathbf{I}_{\mathrm{b} 3}, \mathbf{I}_{\mathrm{b} 4}$

Vector representation

Kirchhoff's Current Law

$$
\begin{aligned}
& \text { For each node } \\
& \sum_{i=1}^{z} I_{i}=0
\end{aligned}
$$

For one sample node we can write
$I_{1}-I_{2}+I_{3}-I_{4}-I_{5}-I_{6}=0$

How to generalize for all nodes?

Electronic Technology Design and Workshop

IFE, B\&T, V semester

Incidence matrix

To apply Kirchhoff's Current Law to whole circuit, let's create the term:
INCIDENCE MARIX - A
$a_{k j}=\left\{\begin{array}{cc}1 & \text { if current } i_{j} \text { leaves node } k \\ -1 & \text { if current } i_{j} \text { enters node } k \\ 0 & \text { if } i_{j} \text { neither enters nor leaves node } k\end{array}\right.$

Incidence matrix generating

Incidence matrix vs reduced incidence matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 1
\end{array}\right]
$$

Can we remove one row without loosing the information?

$$
\mathbf{A}_{\text {reduced }}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 1
\end{array}\right]
$$

4

Electoroic Tectmology Design and Wonsthop IFE, Bat, vesemeser

The Ohm's law

To get relationship between branch voltages v_{b} and branch currents i_{b}, let's use Ohm's Law:

$$
\begin{aligned}
& \mathbf{v}_{b}=\mathbf{r}_{b} \mathbf{i}_{\mathbf{b}} \\
& \mathbf{o r r}_{b}=\mathbf{y}_{b} \mathbf{v}_{b}
\end{aligned}
$$

For the whole circuit we need to move to matrix representation

$$
\mathbf{V}_{b}=\mathbf{R}_{b} \mathbf{I}_{b} \quad \mathbf{I}_{b}=\mathbf{Y}_{b} \mathbf{V}_{b}
$$

R_{b} - branch resistance (impedance) matrix
Y_{b} - branch admittance matrix

Admittance matrix and sources vector

Branch current with independent current source

But independent current and volatge sources also must be considered, so:

$$
\mathbf{I}_{b}=I_{b}^{*}-\left(\mathbf{I}_{\mathrm{g}}-\mathbf{Y}_{\mathrm{b}} \mathbf{V}_{\mathrm{g}}\right)
$$

and because there's no voltage on current sources, we have:
$\mathbf{I}_{\mathrm{b}}{ }^{\text {}}=\mathbf{Y}_{\mathrm{b}} \mathbf{V}_{\mathrm{b}}$ and finally:

$$
I_{b}=Y_{b} V_{b}-\left(I_{g}-Y_{b} V_{g}\right)
$$

g

Electronic Technology Design and Workshop

IFE, B\&T, V semester

Nodal voltage vs branch voltage

If there's taken to consideration that number of nodes is always less or equal than number of branches it is convenient to use Nodal-Voltage Vector $\mathbf{V}_{\mathbf{n}}$ in place of Branch-Voltage Vector $\mathbf{V}_{\mathbf{b}}$

Relation between $\mathbf{V}_{\mathbf{n}}$ and $\mathbf{V}_{\mathbf{b}}$ is following:

$$
\mathbf{V}_{b}=A^{T} V_{n}
$$

so finally we get

Fundamental relation for all linear networks
$\mathbf{V}_{\mathrm{b}}=A^{\mathrm{T}} \mathbf{V}_{\mathrm{n}} \quad A \mathbf{Y}_{\mathrm{b}} \mathbf{V}_{\mathrm{b}}=A\left(\mathbf{I}_{\mathrm{g}}-\mathbf{Y}_{\mathrm{b}} \mathbf{V}_{\mathrm{g}}\right)$
$\mathrm{AY}_{\mathrm{b}} A^{\mathrm{T}} \mathbf{V}_{\mathrm{n}}=\mathrm{A}\left(\mathbf{I}_{\mathrm{g}}-\mathbf{Y}_{\mathrm{b}} \mathbf{V}_{\mathrm{g}}\right)$
what might be rewritten to

$$
\mathbf{Y}_{\mathrm{n}} \quad \mathbf{V}_{\mathrm{n}}=\mathbf{I}_{\mathrm{n}}
$$

where
$\mathbf{Y}_{\mathbf{n}}$ - Node-Admittance Matrix
$\mathbf{I}_{\mathbf{n}}$ - Node-Current Matrix

Solutions and solvers

To solve system of linear equations we need to use one of the common methods as

- Elimination of variables
- Row reduction (Gauss elimination)
- Cramer's rule
- LU decomposition
- other methods

Matrices generation

$$
\mathbf{A}=\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]
$$

$$
\mathbf{Y}_{\mathbf{b}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right] \quad \mathbf{I}_{\mathbf{g}}=\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right] \quad \mathbf{V}_{\mathbf{g}}=\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right]
$$

4

$$
\begin{gathered}
{\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\left[\left[\begin{array}{l}
V_{n 1}
\end{array}\right]=\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right]\right)\right.} \\
{\left[\begin{array}{lll}
-1 & \frac{1}{2} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\left[V_{n 1}\right]=\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right]-\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right]\right)} \\
\left(1+\frac{1}{2}+\frac{1}{3}\right)\left[V_{n 1}\right]=5+7 \\
\frac{11}{6} V_{n 1}=12 \\
V_{n 1}=6.545 \mathrm{VOlt}
\end{gathered}
$$

Putting the numbers into equation

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right] \quad \mathbf{Y}_{\mathrm{b}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right] \quad \mathbf{I}_{\mathrm{g}}=\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right] \quad \mathbf{V}_{\mathrm{g}}=\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right] \\
& \mathbf{A} \mathbf{Y}_{\mathbf{b}} \mathbf{A}^{\mathbf{T}} \mathbf{V}_{\mathbf{n}}=\mathbf{A}\left(\mathbf{I}_{\mathbf{g}}=\mathbf{Y}_{\mathbf{b}} \mathbf{V}_{\mathbf{g}}\right)
\end{aligned}
$$

$$
\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
V_{n 1}
\end{array}\right]=\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]\left(\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right]-\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right]\right)
$$

Electronic Technology Design and Workshop

Summary

- All electronics circuits might be represented by system of equations
- It is easy to extract the parameters from netlist (.cir file)
- The system of equation is solved using the common methods
- Knowledge about the all nodal voltages allows to find any necessary value (currents, power, etc)

