Electronic Technology Design and Workshop

Presented and updated by

Przemek Sekalski DMCS room 2

2007

Technical University of Lodz

Electronic Technology Design and Workshop

Lecture 7 Electronic Circuit Synthesis

Technical University of Lodz

Synthesis of electronic circuits

Technical University of Lodz

Synthesis of digital electronic circuits

Automatic translation of the circuit description to less abstract representations e.g.

- a) from behavioural to structural
- b) from structural to physical
- c) from behavioural to physical

nysicai	behavioral	structural	physical
Transistor			
Gate			
Register			
Processor			

Not supported

(some support possible in specific cases - software-hardware codesign)

Partially supported (fully supported for certain types of digital designs)

Fully supported

Technical University of Lodz Department of Microelectronics and Computer Sciences

Digital synthesis

Technical University of Lodz

Digital synthesis with PLD

Digital circuits classification

ASIC - Application Specific Integrated Circuit
PLD - Programmable Logic Device
FPGA - Field Programmable Gate Array
Semi Custom - Integrated Circuits designed by users with library cells
Full Custom - Integrated Circuits dsigned from scratch, designed or orderd by users

Technical University of Lodz

8

Digital circuits description languages

ABEL (Advanced Boolean Expression Language) one of the oldest HDL, applicable for simple and less complex digital circuits, originally designed for programming certain types of PLDs, projects can be described by Boolean equations, truth tables or state-diagrams.

VHDL - Very High Speed Integrated Circuit (*VHSIC*) Hardware Description Language language for general description of complex digital circuits, acknowledged as IEEE standard (1987), designed for uniform documentation and simulation of digital projects, not targeted for any specific architecture, allows the description of parallel and sequential processing

Verilog -

most popular industry standard, acknowledged as IEEE standard (1995) less complex than VHDL and easier to learn, based on C-language structure, best suited for complex FPGA circuits

Example of behavioral description

Electronic Compass

Technical University of Lodz

Electronic Compass - schematic

Technical University of Lodz

Electronic Compass - transcoder truth-table

	Inp	uts					Out	puts			
North	West	East	South	Ν	NE	Ε	SE	S	SW	W	NW
0	1	1	1	0	1	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1	1
1	1	0	1	1	1	0	1	1	1	1	1
1	1	0	0	1	1	1	0	1	1	1	1
1	1	1	0	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	0	1	1
1	0	1	1	1	1	1	1	1	1	0	1
0	0	1	1	1	1	1	1	1	1	1	0

Technical University of Lodz

Electronic Compass – transcoder chip

The ABEL code (part I)

module transcoder; title '4 to 8 bit transcoder for electronic comapss'

transcoder device 'P16H8';

north, west, east, south pin; n, ne, e, se, s, sw, w, nw pin istype 'com';

on = 0; off = 1;

yes = 0; no = 1; **Beginning of the ABEL program**

Declarations of input and output signals (similar to variables in programming languages)

Definitions of constants (in order to improve clarity of the program)

The ABEL code (part II)

truth_table

test_vectors

Behavioral description of the device functionality (here in form of truth-table)

Verification of correctness of generated equations

Technical University of Lodz

The code implementation

Automatically generated equations:

nw = (north & !west & east # !north & west & south # west & !east & south # north & west & !south);

w = (north & west & !east # !north & east & south # west & !east & south # north & east & !south);

Automatically generated logical structure

. . .

. . .

. . .

P16H8 Chip Diagram

4 to 8 bit transcoder for electronic comapss

-	+	-\	F
		\/	
north	1	20	Vcc
west	2	19	n
east	3	18	е
south	4	17	se
	5	16	S
	6	15	SW
	7	14	w
	8	13	nw
	9	12	ne
GND	10	11	

Technical University of Lodz

Digital vs Analog Systems

Technical University of Lodz

Boolean Algebra

Identity element Commutativity Associativity Distributivity Complement

a+0=a a+b=b+a a+(b+c)=(a+b)+c a+(b*c)=(a+b)*(a+c) a+ā=1 a*1=a a*b=b*a a*(b*c)=(a*b)*c a*(b+c)=(a*b)+(a*c) a*ā=0

Idempotency Complement Absorption Element Elimination De Morgan's Laws a+a=aa+1=1a+a*b=a $a+\bar{a}*b=a+b$ $\overline{a+b}=\bar{a}*\bar{b}$ $a^*a=a$ $a^*0=0$ $a^*(a+b)=a$ $a^*(\bar{a}+b)=a^*b$ $\bar{a}^*b=\bar{a}+\bar{b}$

Boolean Functions

E.g.

$$f(a, b, c) = a^*(b+\bar{c}) + (\bar{a}+b)^*c$$

Truth Table notation

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Minterm notation

$$f(a, b, c) = \bar{a}\bar{b}c + \bar{a}bc + a\bar{b}\bar{c} + ab\bar{c} + abc$$

Maxterm notation

$$f(a, b, c) = (a+b+c) (a+\bar{b}+c) (\bar{a}+b+\bar{c})$$

19

Logic Gates

Technical University of Lodz

Boolean Function Realization - examples

Technical University of Lodz

Memory Elements (flip-flops)

JK flip-flop

J(t)	K(t)	Q(t+1)
0	0	Q(t)
0	1	0
1	0	_1
1	1	$\overline{Q}(t)$

 $Q(t+1) = J(t) \ \overline{Q}(t) + \overline{K}(t) \ Q(t)$

Data flip-flop

Memory Elements (flip-flops)

Toggle flip-flop

Technical University of Lodz

Digital Systems

Y = B(X)

Any change of input signals causes the appropriate change of output signals, as fast as it is possible, i.e after the propagation time of logical gates.

Output signals in combinatorial circuits depends only on the present input signals.

B_x - boolean function

Digital Systems

Output signals are the outputs of memory elements and they may change only after a new write operation is performed.

Output signals are Boolean functions (S) of input signals, but they may change only at prescribed moments.

When there is no write (store) operation, the output remains stable, regardless the state of the input signals.

The sufficient description of the sequential system is given by the set of signals at the output of the memory elements, i.e. *state of the system (Q)*

Technical University of Lodz Department of Microelectronics and Computer Sciences

25

Digital Systems

Output signals are boolean functions (S) of input signals and feedback signals, but they may change only at prescribed moments.

The sufficient description of the sequential system is given by the set of signals at the output of the memory elements, i.e. *state of the system (Q) - output & feedback*

Description of Sequential Digital Systems

What the next state will be after the transition depends on1) the current state (values of the memory element signals Y, F)2) the values of input signals at the moment of the transition

Technical University of Lodz

State Diagrams – memory elements

Technical University of Lodz

State Diagram example - bi-directional person counter

State Diagram example - bi-directional person counter

Technical University of Lodz

Realization - uni-directional person counter

Technical University of Lodz

ABEL - bi-directional person counter

module pcounter; title 'Bi-direction person counter'

> clk pin; "clock signal A,B pin; "signals from IR sensors C pin; "clear signal

In_ pin istype 'reg'; "output line

q1,q0 node istype 'reg'; "state counter

C = .C.; X = .X.;

Equations

[q1..q0].clk=clk; In_.clk=clk; State_Diagram [q1..q0] state 0:if ((A==1) & (B==0) & (C==0)) then 1 with In_:=0 else 0 with In_:=0;

state 1:if (C==1) then 0 else if ((A==1) & (B==0)) then 1 else if ((A==0) & (B==0)) then 2;

state 2:if (C==1) then 0 else if ((A==0) & (B==0)) then 2 else if ((A==0) & (B==1)) then 3;

state 3:if ((A==0) & (B==1)) then 3 else 0 with In_:=1;

end pcounter;

ABEL - bi-directional person counter

test_vectors ([clk,A,B,C] -> [q1,q0,ln_]) [c,0,0,0] -> [0, 0, 0]; [c,1,0,0] -> [0, 1, 0]; [c,0,0,0] -> [1, 0, 0]; [c,0,1,0] -> [1, 1, 0]; [c,0,0,0] -> [0, 0, 1]; [c,0,0,0] -> [0, 0, 0]; [c,1,0,0] -> [0, 1, 0]; [c,x,x,1] -> [0, 0, 0]; [c,0,0,0] -> [0, 0, 0]; [0,1,0,0] -> [0, 1, 0]; [c,1,0,0] -> [0, 1, 0];

Equations:

In_:= (!B & q1.FB & q0.FB # A & q1.FB & q0.FB);

 $In_.C = (clk);$

q0 := (!A & B & q1.FB & q0.FB # !A & B & !C & q1.FB # A & !B & !C & !q1.FB);

q0.C = (clk);

q1 := (!A & B & q1.FB & q0.FB # !A & !C & q1.FB & !q0.FB # !A & !B & !C & !q1.FB & q0.FB);

q1.C = (clk);

34