Electronic Technology Design and Workshop

Presented and updated by
Przemek Sekalski
DMCS room 2

Electronic Technology Design and Workshop

Lecture 7
Electronic Circuit Synthesis

Synthesis of electronic circuits

Synthesis of digital electronic circuits

Automatic translation of the circuit description to less abstract representations e.g.
a) from behavioural to structural
b) from structural to physical
c) from behavioural to physical

Transistor	behavioral	structural	physical
Gate			
Register			
Processor			

Not supported
(some support possible in specific cases - software-hardware codesign)
Partially supported (fully supported for certain types of digital designs)
Fully supported

Digital synthesis

Digital synthesis with PLD

Human activity

Automated process

Digital circuits classification

ASIC - Application Specific Integrated Circuit
PLD - Programmable Logic Device
FPGA - Field Programmable Gate Array
Semi Custom - Integrated Circuits designed by users with library cells
Full Custom - Integrated Circuits dsigned from scratch, designed or orderd by users

Digital circuits description languages

ABEL (Advanced Boolean Expression Language) one of the oldest HDL, applicable for simple and less complex digital circuits, originally designed for programming certain types of PLDs, projects can be described by Boolean equations, truth tables or state-diagrams.

VHDL - Very High Speed Integrated Circuit (VHSIC) Hardware Description Language language for general description of complex digital circuits, acknowledged as IEEE standard (1987), designed for uniform documentation and simulation of digital projects, not targeted for any specific architecture, allows the description of parallel and sequential processing

Verilog -

most popular industry standard, acknowledged as IEEE standard (1995)
less complex than VHDL and easier to learn, based on C-language structure, best suited for complex FPGA circuits

Example of behavioral description

Electronic Compass

Electronic Compass - schematic

Electronic Compass - transcoder truth-table

Inputs					Outputs									
North	West	East	South	N	NE	E	SE	S	SW	W	NW			
0	1	1	1	0	1	1	1	1	1	1	1			
0	1	0	1	1	0	1	1	1	1	1	1			
1	1	0	1	1	1	0	1	1	1	1	1			
1	1	0	0	1	1	1	0	1	1	1	1			
1	1	1	0	1	1	1	1	0	1	1	1			
1	0	1	0	1	1	1	1	1	0	1	1			
1	0	1	1	1	1	1	1	1	1	0	1			
0	0	1	1	1	1	1	1	1	1	1	0			

Electronic Compass - transcoder chip

Input signals

Output signals

The ABEL code (part I)

module transcoder;
title '4 to 8 bit transcoder for electronic comapss'
transcoder device 'P16H8';
north, west, east, south pin;
n, ne, e, se, s, sw, w, nw pin istype 'com';

$$
\begin{aligned}
& \text { on }=0 ; \\
& \text { off }=1 ; \\
& \text { yes }=0 ; \\
& \text { no }=1 ;
\end{aligned}
$$

Beginning of the ABEL program

Declarations of input and output signals (similar to variables in programming languages)

Definitions of constants (in order to improve clarity of the program)

The ABEL code (part II)

truth_table

Behavioral description of the device functionality (here in form of truth-table)

test_vectors

([north,west,east,south]->[n, ne, e, se, s, sw, w, nw])
[yes, no, no, no]->[on, off, off, off, off, off, off, off];
[yes, no, yes, no]->[off, on, off, off, off, off, off, off];
[no, no, yes, no]->[off, off, on, off, off, off, off, off];
[no, no, yes, yes]->[off, off, off, on, off, off, off, off];
[no, no, no, yes]->[off, off, off, off, on, off, off, off];
[no, yes, no, yes]->[off, off, off, off, off, on, off, off];
[no, yes, no, no]->[off, off, off, off, off, off, on, off];
[yes, yes, no, no]->[off, off, off, off, off, off, off, on]; end;

The code implementation

Automatically generated equations:

nw = (north \& !west \& east \# !north \& west \& south \# west \& least \& south \# north \& west \& !south);
w = (north \& west \& !east \# !north \& east \& south \# west \& !east \& south \# north \& east \& !south);

Automatically generated logical structure

P16H8 Chip Diagram

4 to 8 bit transcoder for electronic comapss

north			
	1	20	Vcc
west	2	19	n
east	3	18	e
south	4	17	se
	5	16	s
	6	15	SW
	7	14	w
	8	13	nw
	9	12	ne
GND	10	11	

Digital vs Analog Systems

Input signals

Output signals

digital

Boolean Algebra

Identity element
Commutativity
Associativity
Distributivity
Complement

Idempotency
Complement
Absorption
Element Elimination
De Morgan's Laws

$$
\begin{aligned}
& a+0=a \\
& a+b=b+a \\
& a+(b+c)=(a+b)+c \\
& a+(b * c)=(a+b)^{*}(a+c) \\
& a+\bar{a}=1
\end{aligned}
$$

$$
a+a=a
$$

$$
a+1=1
$$

$$
a+a * b=a
$$

$$
\mathrm{a}+\overline{\mathrm{a}}^{*} \mathrm{~b}=\mathrm{a}+\mathrm{b}
$$

$$
\overline{\mathrm{a}+\mathrm{b}}=\overline{\mathrm{a}} * \overline{\mathrm{~b}}
$$

$$
a^{*} 1=a
$$

$$
a^{*} b=b^{*} a
$$

$$
a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c
$$

$$
a^{*}(b+c)=\left(a^{*} b\right)+\left(a^{*} c\right)
$$

$$
a^{*} \bar{a}=0
$$

$$
\begin{aligned}
& a^{*} a=a \\
& a^{*} 0=0 \\
& a^{*}(a+b)=a \\
& a^{*}(\bar{a}+b)=a^{*} b \\
& a^{*} b=\bar{a}+\bar{b}
\end{aligned}
$$

Boolean Functions

$$
y=B\left(x_{1}, x_{2} \ldots x_{n}\right)
$$

E.g.
$f(a, b, c)=a^{*}(b+\bar{c})+(\bar{a}+b)^{*} c$

Truth Table notation

a	b	c	$f(a, b, c)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Minterm notation

$$
f(a, b, c)=\bar{a} \bar{b} c+\bar{a} b c+a \bar{b} \bar{c}+a b \bar{c}+a b c
$$

Maxterm notation

$$
f(a, b, c)=(a+b+c)(a+\bar{b}+c)(\bar{a}+b+\bar{c})
$$

Logic Gates

Boolean Function Realization - examples

Memory Elements (flip-flops)

JK flip-flop

$\mathrm{J}(\mathrm{t})$	$\mathrm{K}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$
0	0	$\mathrm{Q}(\mathrm{t})$
0	1	0
1	0	1
1	1	$\overline{\mathrm{Q}}(\mathrm{t})$

$\mathrm{Q}(\mathrm{t}+1)=\mathrm{J}(\mathrm{t}) \overline{\mathrm{Q}}(\mathrm{t})+\overline{\mathrm{K}}(\mathrm{t}) \mathrm{Q}(\mathrm{t})$

Data flip-flop

$D(t)$	$Q(t+1)$
0	0
1	1

Memory Elements (flip-flops)

Toggle flip-flop

$$
\mathrm{Q}(\mathrm{t}+1)=\overline{\mathrm{Q}}(\mathrm{t})
$$

Digital Systems

Output signals in combinatorial circuits depends only on the present input signals.

Digital Systems

Output signals are the outputs of memory elements and they may change only after a new write operation is performed.

Output signals are Boolean functions (S) of input signals, but they may change only at prescribed moments.

When there is no write (store) operation, the output remains stable, regardless the state of the input signals.

The sufficient description of the sequential system is given by the set of signals at the output of the memory elements, i.e. state of the system (Q)

Digital Systems

Logical gates

Output signals are boolean functions (S) of input signals and feedback signals, but they may change only at prescribed moments.

The sufficient description of the sequential system is given by the set of signals at the output of the memory elements, i.e. state of the system (Q) - output \& feedback

Description of Sequential Digital Systems

What the next state will be after the transition depends on

1) the current state (values of the memory element signals Y, F)
2) the values of input signals at the moment of the transition

State Diagrams - example

State Diagrams - memory elements

Toggle flip-flop

State Diagram - counter

State Diagram example - bi-directional person counter

State Diagram example - bi-directional person counter

Realization - uni-directional person counter

Integrated circuit for person counting system

ABEL - bi-directional person counter

module pcounter;
title 'Bi-direction person counter'
clk pin; "clock signal
A,B pin; "signals from IR sensors
C pin; "clear signal
In_ pin istype 'reg'; "output line
q1,q0 node istype 'reg'; "state counter
c = .c.;
x = .x.;
Equations
[q1..q0].clk=clk;
In_.clk=clk;

```
State_Diagram [q1..q0]
    state 0:if \(((A==1) \&(B==0) \&(C==0))\) then 1 with \(\ln \quad:=0\)
        else 0 with \(\mathrm{In}_{\mathrm{C}}:=0\);
    state 1 :if ( \(\mathrm{C}==1\) ) then 0
        else
        if \(((\mathrm{A}==1) \&(\mathrm{~B}==0))\) then 1
        else
        if \(((\mathrm{A}==0) \&(\mathrm{~B}==0))\) then 2 ;
    state 2:if ( \(\mathrm{C}==1\) ) then 0
        else
        if \(((A==0) \&(B==0))\) then 2
        else
        if \(((\mathrm{A}==0) \&(\mathrm{~B}==1))\) then 3 ;
    state 3:if \(((A==0) \&(B==1))\) then 3
        else 0 with \(\ln _{-}:=1\);
end pcounter;
```


ABEL - bi-directional person counter

$$
\begin{aligned}
& \text { test_vectors ([clk,A,B,C] -> [q1,q0,In_]) } \\
& \text { [c,0,0,0] -> [0, 0, 0]; } \\
& \text { [c, 1,0,0] -> [0, 1, 0]; } \\
& \text { [c,0,0,0] -> [1, 0, 0]; } \\
& \text { [c,0,1,0] -> [1, 1, 0]; } \\
& \text { [c,0,0,0] -> [0, 0, 1]; } \\
& \text { [c,0,0,0] -> [0, 0, 0]; } \\
& \text { [c, 1,0,0] -> [0, 1, 0]; } \\
& \text { [c,0,0,0] -> [1, 0, 0]; } \\
& {[c, x, x, 1]->[0,0,0] ;} \\
& \text { [c,0,0,0] -> [0, 0, 0]; } \\
& \text { [0,1,0,0] -> [0,0, 0]; } \\
& \text { [c,1,0,0] -> [0, 1, } 0] \text {; } \\
& \text { Equations: } \\
& \mathrm{In}_{-}:=(!\mathrm{B} \& \mathrm{q1} . \mathrm{FB} \& \mathrm{q} 0 . \mathrm{FB} \\
& \text { \# A \& q1.FB \& q0.FB); } \\
& \text { In_. } C=(\mathrm{clk}) \text {; } \\
& \mathrm{q} 0:=(!\mathrm{A} \& \mathrm{~B} \& \mathrm{q} 1 . \mathrm{FB} \& \mathrm{q} 0 . \mathrm{FB} \\
& \text { \# ! } A \& B \&!C \& q 1 . F B \\
& \text { \# A \& !B \& !C \& !q1.FB); } \\
& \text { q0.C = (clk); } \\
& q 1:=(!A \& B \& q 1 . F B \& q 0 . F B \\
& \text { \# ! } A \&!C \& q 1 . F B \&!q 0 . F B \\
& \text { \# ! } A \&!B \&!C \&!q 1 . F B \& q 0 . F B) ; \\
& \text { q1.C = (clk); }
\end{aligned}
$$

