ldexp, ldexpf, ldexpl

From cppreference.com
< c‎ | numeric‎ | math
 
 
 
Common mathematical functions
Functions
Basic operations
(C99)
(C99)
(C99)
(C99)
(C99)
(C99)(C99)(C99)
Exponential functions
(C99)
(C99)
(C99)
(C99)
Power functions
(C99)
(C99)
Trigonometric and hyperbolic functions
(C99)
(C99)
(C99)
Error and gamma functions
(C99)
(C99)
(C99)
(C99)
Nearest integer floating point operations
(C99)(C99)(C99)
(C99)
(C99)(C99)(C99)
Floating point manipulation functions
ldexp
(C99)(C99)
(C99)
(C99)
Classification
(C99)
(C99)
(C99)
Types
(C99)(C99)
Macro constants
 
Defined in header <math.h>
float       ldexpf( float arg, int exp );
(1) (since C99)
double      ldexp( double arg, int exp );
(2)
long double ldexpl( long double arg, int exp );
(3) (since C99)
Defined in header <tgmath.h>
#define ldexp( arg, exp )
(4) (since C99)
1-3) Multiplies a floating point value arg by the number 2 raised to the exp power.
4) Type-generic macro: If arg has type long double, ldexpl is called. Otherwise, if arg has integer type or the type double, ldexp is called. Otherwise, ldexpf is called, respectively.

Parameters

arg - floating point value
exp - integer value

Return value

If no errors occur, arg multiplied by 2 to the power of exp (arg×2exp
) is returned.

If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.

If a range error due to underflow occurs, the correct result (after rounding) is returned.

Error handling

Errors are reported as specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • Unless a range error occurs, FE_INEXACT is never raised (the result is exact)
  • Unless a range error occurs, the current rounding mode is ignored
  • If arg is ±0, it is returned, unmodified
  • If arg is ±∞, it is returned, unmodified
  • If exp is 0, then arg is returned, unmodified
  • If arg is NaN, NaN is returned

Notes

On binary systems (where FLT_RADIX is 2), ldexp is equivalent to scalbn.

The function ldexp ("load exponent"), together with its dual, frexp, can be used to manipulate the representation of a floating-point number without direct bit manipulations.

On many implementations, ldexp is less efficient than multiplication or division by a power of two using arithmetic operators.

Example

#include <stdio.h>
#include <math.h>
#include <float.h>
#include <errno.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
int main(void)
{
    printf("ldexp(7, -4) = %f\n", ldexp(7, -4));
    printf("ldexp(1, -1074) = %g (minimum positive subnormal double)\n",
            ldexp(1, -1074));
    printf("ldexp(nextafter(1,0), 1024) = %g (largest finite double)\n",
            ldexp(nextafter(1,0), 1024));
    // special values
    printf("ldexp(-0, 10) = %f\n", ldexp(-0.0, 10));
    printf("ldexp(-Inf, -1) = %f\n", ldexp(-INFINITY, -1));
    //error handling
    errno = 0; feclearexcept(FE_ALL_EXCEPT);
    printf("ldexp(1, 1024) = %f\n", ldexp(1, 1024));
    if(errno == ERANGE) perror("    errno == ERANGE");
    if(fetestexcept(FE_OVERFLOW)) puts("    FE_OVERFLOW raised");
}

Possible output:

ldexp(7, -4) = 0.437500
ldexp(1, -1074) = 4.94066e-324 (minimum positive subnormal double)
ldexp(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double)
ldexp(-0, 10) = -0.000000
ldexp(-Inf, -1) = -inf
ldexp(1, 1024) = inf
    errno == ERANGE: Numerical result out of range
    FE_OVERFLOW raised

References

  • C11 standard (ISO/IEC 9899:2011):
  • 7.12.6.6 The ldexp functions (p: 244)
  • 7.25 Type-generic math <tgmath.h> (p: 373-375)
  • F.10.3.6 The ldexp functions (p: 522)
  • C99 standard (ISO/IEC 9899:1999):
  • 7.12.6.6 The ldexp functions (p: 225)
  • 7.22 Type-generic math <tgmath.h> (p: 335-337)
  • F.9.3.6 The ldexp functions (p: 459)
  • C89/C90 standard (ISO/IEC 9899:1990):
  • 4.5.4.3 The ldexp function

See also

breaks a number into significand and a power of 2
(function)
(C99)(C99)(C99)(C99)(C99)(C99)
computes efficiently a number times FLT_RADIX raised to a power
(function)