operator+,-,*,/,%,&,|,^,<<,>>,&&,|| std::valarray
Defined in header <valarray>
|
||
template <class T> std::valarray<T> operator+ (const std::valarray<T>& lhs, const std::valarray<T>& rhs); template <class T> std::valarray<T> operator- (const std::valarray<T>& lhs, const std::valarray<T>& rhs); |
(1) | |
template <class T> std::valarray<T> operator+ (const T& val, const std::valarray<T>& rhs); template <class T> std::valarray<T> operator- (const T& val, const std::valarray<T>& rhs); |
(2) | |
template <class T> std::valarray<T> operator+ (const std::valarray<T>& lhs, const T& rhs); template <class T> std::valarray<T> operator- (const std::valarray<T>& lhs, const T& val); |
(3) | |
Apply binary operators to each element of two valarrays, or a valarray and a value.
Parameters
rhs | - | a numeric array |
lhs | - | a numeric array |
val | - | a value of type T
|
Return value
A valarray with the same size as the parameter.
Note
The behaviour is undefined when the two arguments are valarrays with different sizes.
The function can be implemented with the return type different from std::valarray. In this case, the replacement type has the following properties:
- All const member functions of std::valarray are provided.
- std::valarray, std::slice_array, std::gslice_array, std::mask_array and std::indirect_array can be constructed from the replacement type.
- All functions accepting an argument of type const std::valarray& except begin() and end() (since C++14) should also accept the replacement type.
- All functions accepting two arguments of type const std::valarray& should accept every combination of const std::valarray& and the replacement type.
- The return type does not add more than two levels of template nesting over the most deeply-nested argument type.
Example
Finds real roots of multiple quadratic equations.
#include <valarray> #include <iostream> int main() { std::valarray<double> a(1, 8); std::valarray<double> b{1, 2, 3, 4, 5, 6, 7, 8}; std::valarray<double> c = -b; // literals must also be of type T (double in this case) std::valarray<double> d = std::sqrt((b * b - 4.0 * a * c)); std::valarray<double> x1 = (-b - d) / (2.0 * a); std::valarray<double> x2 = (-b + d) / (2.0 * a); std::cout << "quadratic equation root 1, root 2" << "\n"; for (size_t i = 0; i < a.size(); ++i) { std::cout << a[i] << "x\u00B2 + " << b[i] << "x + " << c[i] << " = 0 "; std::cout << x1[i] << ", " << x2[i] << "\n"; } }
Output:
quadratic equation root 1, root 2 1x² + 1x + -1 = 0 -1.61803, 0.618034 1x² + 2x + -2 = 0 -2.73205, 0.732051 1x² + 3x + -3 = 0 -3.79129, 0.791288 1x² + 4x + -4 = 0 -4.82843, 0.828427 1x² + 5x + -5 = 0 -5.8541, 0.854102 1x² + 6x + -6 = 0 -6.87298, 0.872983 1x² + 7x + -7 = 0 -7.88748, 0.887482 1x² + 8x + -8 = 0 -8.89898, 0.898979