
The CUDA Programming
Model

2

CUDACUDA

● “Compute Unified Device Architecture”
● General purpose programming model
● User kicks off batches of threads on the GPU

● GPU = dedicated super-threaded, massively data parallel
co-processor

● Targeted software stack
● Compute oriented drivers, language, and tools

● Driver for loading computation programs into GPU
● Standalone Driver - Optimized for computation
● Interface designed for compute – graphics-free API
● Guaranteed maximum download & readback speeds
● Explicit GPU memory management

3

CUDA Devices and ThreadsCUDA Devices and Threads

● A compute device
● Is a coprocessor to the CPU or host
● Has its own DRAM (device memory)
● Runs many threads in parallel
● Is typically a GPU but can also be another type of parallel

processing device
● Data-parallel portions of an application are expressed as

device kernels which run on many threads
● Differences between GPU and CPU threads

● GPU threads are extremely lightweight
● Very little creation overhead

● GPU needs 1000s of threads for full efficiency
● Multi-core CPU needs only a few

4

Extended CExtended C
● Declspecs

● global, device, shared,
local, constant

● Keywords
● threadIdx, blockIdx

● Intrinsics
● __syncthreads

● Runtime API
● Memory, symbol, execution

management

● Function launch

__device__ float filter[N];
__global__ void convolve (float *image) {
 __shared__ float region[M];

 ...

 region[threadIdx] = image[i];

 __syncthreads();
 ...
 image[j] = result;
}
// Allocate GPU memory
void *myimage = cudaMalloc(bytes);

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

__device__ float filter[N];
__global__ void convolve (float *image) {
 __shared__ float region[M];

 ...

 region[threadIdx] = image[i];

 __syncthreads();
 ...
 image[j] = result;
}
// Allocate GPU memory
void *myimage = cudaMalloc(bytes);

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

5

Arrays of Parallel ThreadsArrays of Parallel Threads

● A CUDA kernel is executed by an array of threads
● All threads run the same code (SPMD)
● Each thread has an ID that it uses to compute memory

addresses and make control decisions

76543210 76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

6

Thread Blocks: Scalable CooperationThread Blocks: Scalable Cooperation

● Divide monolithic thread array into multiple blocks
● Threads within a block cooperate via shared memory,

atomic operations and barrier synchronization
● Threads in different blocks cannot cooperate

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID
Thread Block 0

…
…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1
76543210 76543210 76543210 76543210 76543210 76543210

7

Block IDs and Thread IDsBlock IDs and Thread IDs

● Each thread uses IDs to
decide what data to work
on
● Block ID: 1D or 2D
● Thread ID: 1D, 2D, or 3D

● Simplifies memory
addressing when
processing
multidimensional data
● Image processing
● Solving PDEs on volumes
● …

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Block
(0, 1)

Block
(1, 1)

Grid 2Grid 2

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(1,0,1)(0,0,1) (2,0,1) (3,0,1)

8

CUDA Memory Model OverviewCUDA Memory Model Overview

● Global memory
● Main means of

communicating R/W Data
between host and device

● Contents visible to all
threads

● Long latency access
● We will focus on global

memory for now
● Constant and texture

memory will come later

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

9

CUDA API Highlights: Easy and LightweightCUDA API Highlights: Easy and Lightweight

● The API is an extension to the ANSI C programming
language
● Low learning curve

● The hardware is designed to enable lightweight runtime and
driver
● High performance

10

CUDA Device Memory AllocationCUDA Device Memory Allocation

● cudaMalloc()
● Allocates object in the device Global Memory
● Requires two parameters

● Address of a pointer to the allocated object
● Size of the allocated object

● cudaFree()
● Frees object from device Global Memory

● Pointer to freed object

11

CUDA Device Memory Allocation (cont.)CUDA Device Memory Allocation (cont.)

● Code example:
● Allocate a 64 * 64 single precision float array
● Attach the allocated storage to Md
● “d” is often used to indicate a device data structure

TILE_WIDTH = 64;
float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);
cudaMalloc((void**)&Md, size);
//...
cudaFree(Md);

TILE_WIDTH = 64;
float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);
cudaMalloc((void**)&Md, size);
//...
cudaFree(Md);

12

CUDA Host-Device Data TransferCUDA Host-Device Data Transfer

● cudaMemcpy()
● memory data transfer
● Requires four parameters

● Pointer to destination
● Pointer to source
● Number of bytes copied
● Type of transfer

● Host to Host
● Host to Device
● Device to Host
● Device to Device

● Asynchronous transfer

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

13

CUDA Host-Device Data Transfer(cont.)CUDA Host-Device Data Transfer(cont.)

● Code example:
● Transfer a 64 * 64 single precision float array
● M is in host memory and Md is in device memory
● cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost

are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

14

CUDA Function DeclarationsCUDA Function Declarations

● __global__ defines a kernel function
● Must return void

hosthost__host__ float HostFunc()
hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

hosthost__host__ float HostFunc()
hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

15

CUDA Function Declarations (cont.)CUDA Function Declarations (cont.)

● __device__ functions cannot have their address taken
● For functions executed on the device:

● No recursion
● No static variable declarations inside the function
● No variable number of arguments

16

Calling a Kernel Function – Thread CreationCalling a Kernel Function – Thread Creation

● A kernel function must be called with an execution
configuration:

● Any call to a kernel function is asynchronous, explicit synch
needed for blocking

__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

17

A Simple Running Example: Matrix MultiplicationA Simple Running Example: Matrix Multiplication

● A simple matrix multiplication example that illustrates the
basic features of memory and thread management in CUDA
programs
● Leave shared memory usage until later
● Local, register usage
● Thread ID usage
● Memory data transfer API between host and device
● Assume square matrix for simplicity

18

Programming Model: Square Matrix Multiplication ExampleProgramming Model: Square Matrix Multiplication Example

● P = M * N of size WIDTH x WIDTH
● Without tiling:
● One thread calculates one element of

P
● M and N are loaded WIDTH times

from global memory
M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

19

Memory Layout of a Matrix in CMemory Layout of a Matrix in C

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

20

Step 1: Matrix Multiplication: A Simple Host Version in CStep 1: Matrix Multiplication: A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

21

Step 2: Input Matrix Data Transfer (Host-side Code)Step 2: Input Matrix Data Transfer (Host-side Code)

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{
 int size = Width * Width * sizeof(float);
 float *Md, *Nd, *Pd;
 …
// 1. Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
 // Allocate P on the device
 cudaMalloc(&Pd, size);

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{
 int size = Width * Width * sizeof(float);
 float *Md, *Nd, *Pd;
 …
// 1. Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);
 // Allocate P on the device
 cudaMalloc(&Pd, size);

22

Step 3: Output Matrix Data Transfer (Host-side Code)Step 3: Output Matrix Data Transfer (Host-side Code)

 // 2. Kernel invocation code – to be shown later
 …
 // 3. Read P from the device
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);
 // Free device matrices
 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

 // 2. Kernel invocation code – to be shown later
 …
 // 3. Read P from the device
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);
 // Free device matrices
 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

23

Step 4: Kernel FunctionStep 4: Kernel Function

// Matrix multiplication kernel – per thread code
__global__ void MatrixMulKernel
 (float* Md, float* Nd, float* Pd, int Width)
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;
 for (int k = 0; k < Width; ++k) {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }
 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

// Matrix multiplication kernel – per thread code
__global__ void MatrixMulKernel
 (float* Md, float* Nd, float* Pd, int Width)
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;
 for (int k = 0; k < Width; ++k) {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }
 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

Nd

Md Pd

W
ID

TH
W

ID
TH

WIDTH WIDTH

ty

tx

ty

tx

k

k

24

Step 5: Kernel Invocation(Host-side Code)Step 5: Kernel Invocation(Host-side Code)

 // Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

 // Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

25

Only One Thread Block UsedOnly One Thread Block Used

● One Block of threads compute
matrix Pd
● Each thread computes one element

of Pd
● Each thread

● Loads a row of matrix Md
● Loads a column of matrix Nd
● Performs one multiply and addition

for each pair of Md and Nd elements
● Compute to off-chip memory access

ratio close to 1:1 (not very high)
● Size of matrix limited by the number

of threads allowed in a thread block

Grid 1
Block 1

3 2 5 4

2

4

2

6

48

T hr e a d
(2 , 2)

WIDTH

Md Pd

Nd

26

Step 7: Handling Arbitrary Sized Square MatricesStep 7: Handling Arbitrary Sized Square Matrices

● Have each 2D thread block to
compute a (TILE_WIDTH)2 sub-matrix
(tile) of the result matrix

● Each has (TILE_WIDTH)2 threads
● Generate a 2D Grid of

(WIDTH/TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

TH
W

ID
TH

WIDTH WIDTH

ty

tx

by

bx

TILE_WIDTH

You still need to put a
loop around the kernel
call for cases where
WIDTH/TILE_WIDTH
is greater than max
grid size (64K)!

27

Compiling a CUDA ProgramCompiling a CUDA Program

● Parallel Thread
eXecution (PTX)
● Virtual Machine and ISA
● Programming model
● Execution resources and

state

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX CodeVirtual

Physical

CPU Code

float4 me = gx[gtid];
me.x += me.y * me.z;

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

28

CompilationCompilation

● Any source file containing CUDA language extensions must
be compiled with NVCC

● NVCC is a compiler driver
● Works by invoking all the necessary tools and compilers like

cudacc, g++, cl, ...
● NVCC outputs:

● C code (host CPU Code)
● Must then be compiled with the rest of the application using

another tool
● PTX

● Object code directly
● Or, PTX source, interpreted at runtime

29

LinkingLinking

● Any executable with CUDA code requires two dynamic
libraries:
● The CUDA runtime library (cudart)
● The CUDA core library (cuda)

30

Debugging Using the Device Emulation ModeDebugging Using the Device Emulation Mode

● An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host using the
CUDA runtime
● No need of any device and CUDA driver
● Each device thread is emulated with a host thread

● Running in device emulation mode, one can:
● Use host native debug support (breakpoints, inspection, etc.)
● Access any device-specific data from host code and vice-versa
● Call any host function from device code (e.g. printf) and

vice-versa
● Detect deadlock situations caused by improper usage of
__syncthreads

31

Device Emulation Mode PitfallsDevice Emulation Mode Pitfalls

● Emulated device threads execute sequentially, so
simultaneous accesses of the same memory location by
multiple threads could produce different results.

● Dereferencing device pointers on the host or host pointers
on the device can produce correct results in device
emulation mode, but will generate an error in device
execution mode

32

Floating PointFloating Point

● Results of floating-point computations will slightly differ
because of:
● Different compiler outputs, instruction sets
● Use of extended precision for intermediate results

● There are various options to force strict single precision on the
host

33

Matrix Multiplication Using Multiple BlocksMatrix Multiplication Using Multiple Blocks

● Break-up Pd into tiles
● Each block calculates one tile
● Each thread calculates one element
● Block size equal tile size

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

W
ID

TH
W

ID
TH

34

A Small ExampleA Small Example

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2

35

A Small Example: MultiplicationA Small Example: Multiplication

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

36

Matrix Multiplication Kernel using Multiple BlocksMatrix Multiplication Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
 // Calculate the column index of Pd and N
 int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
 float Pvalue = 0;
 // each thread computes one element of the block sub-matrix
 for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
 Pd[Row*Width+Col] = Pvalue;
}

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
 // Calculate the column index of Pd and N
 int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
 float Pvalue = 0;
 // each thread computes one element of the block sub-matrix
 for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
 Pd[Row*Width+Col] = Pvalue;
}

37

CUDA Thread BlockCUDA Thread Block

● All threads in a block execute the same kernel program
(SPMD)
● Programmer declares block:
● Block size 1 to 512 concurrent threads
● Block shape 1D, 2D, or 3D
● Block dimensions in threads

● Threads have thread id numbers within block
● Thread program uses thread id to select work and address

shared data
● Threads in the same block share data and synchronize

while doing their share of the work
● Threads in different blocks cannot cooperate

● Each block can execute in any order relative to other blocks!

38

Transparent ScalabilityTransparent Scalability

● Hardware is free to assigns blocks to any processor at any
time

● A kernel scales across any number of parallel processors
● Each block can execute in any order relative to other blocks.

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

DeviceDevice

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1Block 0Block 0 Block 1Block 1

Block 2 Block 3Block 2Block 2 Block 3Block 3

Block 4 Block 5Block 4Block 4 Block 5Block 5

Block 6 Block 7Block 6Block 6 Block 7Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1Block 0 Block 1

Block 2 Block 3Block 2 Block 3

Block 4 Block 5Block 4 Block 5

Block 6 Block 7Block 6 Block 7

DeviceDevice

Block 0 Block 1 Block 2 Block 3Block 0Block 0 Block 1Block 1 Block 2Block 2 Block 3Block 3

Block 4 Block 5 Block 6 Block 7Block 4Block 4 Block 5Block 5 Block 6Block 6 Block 7Block 7

time

39

G80 Example: Executing Thread BlocksG80 Example: Executing Thread Blocks

● Threads are assigned to Streaming
Multiprocessors in block granularity
● Up to 8 blocks to each SM as resource

allows
● SM in G80 can take up to 768 threads

● Could be 256 (threads/block) * 3 blocks
● Or 128 (threads/block) * 6 blocks, etc.

● Threads run concurrently
● SM maintains thread/block id #s
● SM manages/schedules thread execution

t0 t1 t2 … tmt0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tmt0 t1 t2 … tmSM 1SM 0

40

G80 Example: Thread SchedulingG80 Example: Thread Scheduling

● Each Block is executed as 32-thread Warps
● An implementation decision, not part of the CUDA

programming model
● Warps are scheduling units in SM

● If 3 blocks are assigned to an SM and each block has 256
threads, how many Warps are there in an SM?
● Each Block is divided into 256/32 = 8 Warps
● There are 8 * 3 = 24 Warps

41

G80 Example: Thread Scheduling (Cont.)G80 Example: Thread Scheduling (Cont.)
● SM implements zero-overhead warp scheduling

● At any time, only one of the warps is executed by SM
● Warps whose next instruction has its operands ready

for consumption are eligible for execution
● Eligible Warps are selected for execution on a

prioritized scheduling policy
● All threads in a warp execute the same instruction

when selected
● 4 clock cycles needed to dispatch the same instruction

for all threads in a Warp in G80
● If one global memory access is needed for every 4

instructions, a minimal of 13 Warps are needed to fully
tolerate 200-cycle memory latency

TB1
W1

TB = Thread Block , W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

warp 8 instruction 11warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42warp 1 instruction 42

warp 3 instruction 95warp 3 instruction 95

warp 8 instruction 12warp 8 instruction 12

...

time

warp 3 instruction 96warp 3 instruction 96

42

G80 Block Granularity ConsiderationsG80 Block Granularity Considerations

● For Matrix Multiplication using multiple blocks, should I use
8X8, 16X16 or 32X32 blocks?
● For 8X8, we have 64 threads per Block. Since each SM can

take up to 768 threads, there are 12 Blocks. However, each
SM can only take up to 8 Blocks, only 512 threads will go into
each SM!

● For 16X16, we have 256 threads per Block. Since each SM
can take up to 768 threads, it can take up to 3 Blocks and
achieve full capacity unless other resource considerations
overrule.

● For 32X32, we have 1024 threads per Block. Not even one can
fit into an SM!

43

Application Programming InterfaceApplication Programming Interface

● The API is an extension to the C programming language
● It consists of:

● Language extensions
● To target portions of the code for execution on the device

● A runtime library split into:
● A common component providing built-in vector types and a subset

of the C runtime library in both host and device codes
● A host component to control and access one or more devices

from the host
● A device component providing device-specific functions

44

Language Extensions: Built-in VariablesLanguage Extensions: Built-in Variables

● dim3 gridDim;
● Dimensions of the grid in blocks (gridDim.z unused)

● dim3 blockDim;
● Dimensions of the block in threads

● dim3 blockIdx;
● Block index within the grid

● dim3 threadIdx;
● Thread index within the block

45

Common Runtime Component: Mathematical FunctionsCommon Runtime Component: Mathematical Functions

● pow, sqrt, cbrt, hypot
● exp, exp2, expm1
● log, log2, log10, log1p
● sin, cos, tan, asin, acos, atan, atan2
● sinh, cosh, tanh, asinh, acosh, atanh
● ceil, floor, trunc, round
● Etc.

● When executed on the host, a given function uses the C
runtime implementation if available

● These functions are only supported for scalar types, not vector
types

46

Common Runtime Component: Mathematical FunctionsCommon Runtime Component: Mathematical Functions

● Some mathematical functions (e.g. sin(x)) have a less
accurate, but faster device-only version (e.g. __sin(x))
● __pow
● __log, __log2, __log10
● __exp
● __sin, __cos, __tan

47

Host Runtime ComponentHost Runtime Component

● Provides functions to deal with:
● Device management (including multi-device systems)
● Memory management
● Error handling

● Initializes the first time a runtime function is called
● A host thread can invoke device code on only one device

● Multiple host threads required to run on multiple devices

48

Device Runtime Component: Synchronization FunctionDevice Runtime Component: Synchronization Function

● void __syncthreads();
● Synchronizes all threads in a block
● Once all threads have reached this point, execution

resumes normally
● Used to avoid RAW / WAR / WAW hazards when accessing

shared or global memory
● Allowed in conditional constructs only if the conditional is

uniform across the entire thread block

49

G80 Implementation of CUDA MemoriesG80 Implementation of CUDA Memories

● Each thread can:
● Read/write per-thread

registers
● Read/write per-thread

local memory
● Read/write per-block

shared memory
● Read/write per-grid global

memory
● Read/only per-grid

constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

50

CUDA Variable Type QualifiersCUDA Variable Type Qualifiers

● __device__ is optional when used with __local__,
__shared__, or __constant__

● Automatic variables without any qualifier reside in a register
● Except arrays that reside in local memory

blockblockshared__device__ __shared__ int SharedVar;
applicationgridglobal__device__ int GlobalVar;

threadthreadlocal__device__ __local__ int LocalVar;

grid

Scope

applicationconstant__device__ __constant__ int ConstantVar;

LifetimeMemoryVariable declaration

blockblockshared__device__ __shared__ int SharedVar;
applicationgridglobal__device__ int GlobalVar;

threadthreadlocal__device__ __local__ int LocalVar;

grid

Scope

applicationconstant__device__ __constant__ int ConstantVar;

LifetimeMemoryVariable declaration

51

Where to Declare Variables?Where to Declare Variables?

Can host access it?

Outside of
any Function In the kernel

yes no

Can host access it?

Outside of
any Function In the kernel

yes no
global
constant

register (automatic)
shared
local

52

Variable Type RestrictionsVariable Type Restrictions

● Pointers can only point to memory allocated or declared in
global memory:
● Allocated in the host and passed to the kernel:

● __global__ void KernelFunc(float* ptr)
● Obtained as the address of a global variable:

● float* ptr = &GlobalVar;

53

A Common Programming StrategyA Common Programming Strategy

● Global memory resides in device memory (DRAM) - much
slower access than shared memory

● So, a profitable way of performing computation on the
device is to tile data to take advantage of fast shared
memory:
● Partition data into subsets that fit into shared memory
● Handle each data subset with one thread block by:

● Loading the subset from global memory to shared memory, using
multiple threads to exploit memory-level parallelism

● Performing the computation on the subset from shared memory;
each thread can efficiently multi-pass over any data element

● Copying results from shared memory to global memory

54

A Common Programming Strategy (Cont.)A Common Programming Strategy (Cont.)

● Constant memory also resides in device memory (DRAM) -
much slower access than shared memory
● But… cached!
● Highly efficient access for read-only data

● Carefully divide data according to access patterns
● R/Only → constant memory (very fast if in cache)
● R/W shared within Block → shared memory (very fast)
● R/W within each thread → registers (very fast)
● R/W inputs/results → global memory (very slow)

55

GPU Atomic Integer OperationsGPU Atomic Integer Operations

● Atomic operations on integers in global memory:
● Associative operations on signed/unsigned ints
● add, sub, min, max, ...
● and, or, xor
● Increment, decrement
● Exchange, compare and swap

● Requires hardware with compute capability 1.1 and above.

56

Review: Matrix Multiplication Kernel using Multiple BlocksReview: Matrix Multiplication Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
 // Calculate the column index of Pd and N
 int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
 float Pvalue = 0;
 // each thread computes one element of the block sub-matrix
 for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
 Pd[Row*Width+Col] = Pvalue;
}

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
 // Calculate the column index of Pd and N
 int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
 float Pvalue = 0;
 // each thread computes one element of the block sub-matrix
 for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
 Pd[Row*Width+Col] = Pvalue;
}

57

How about performance on G80?How about performance on G80?

● All threads access global
memory for their input matrix
elements
● Two memory accesses (8 bytes)

per floating point multiply-add
● 4B/s of memory

bandwidth/FLOPS
● 4*346.5 = 1386 GB/s required to

achieve peak FLOP rating
● 86.4 GB/s limits the code at 21.6

GFLOPS
● The actual code runs at about

15 GFLOPS
● Need to drastically cut down

memory accesses to get closer
to the peak 346.5 GFLOPS

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

58

Idea: Use Shared Memory to reuse global memory dataIdea: Use Shared Memory to reuse global memory data

● Each input element is read by Width
threads.

● Load each element into Shared
Memory and have several threads use
the local version to reduce the memory
bandwidth

● Tiled algorithms
M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

59

Tiled MultiplyTiled Multiply

● Break up the execution of the kernel into
phases so that the data accesses in
each phase is focused on one subset
(tile) of Md and Nd

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by
ty 2

1
0

TILE_WIDTH-1 -1

2

1

0

TI
LE

_W
ID

TH
TI

LE
_W

ID
TH

TI
LE

_W
ID

TH
E

W
ID

TH
W

ID
TH

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
012

0 1 2

by
ty 2

1
0

2

1

0

TI
LE

_W
ID

TH
TI

LE
_W

ID
TH

T
IL

E
_W

ID
T

H

W
ID

TH
W

ID
TH

60

A Small ExampleA Small Example

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

61

Every Md and Nd Element is used exactly twice in generating a 2X2 tile of PEvery Md and Nd Element is used exactly twice in generating a 2X2 tile of P

M3,1 * N1,3

M2,1 * N1,2

M1,1 * N1,1

M0,1 * N1,0

P1,1

thread1,1

M3,1 * N0,3

M2,1 * N0,2

M1,1 * N0,1

M0,1 * N0,0

P0,1

thread0,1

M3,0 * N1,3M3,0 * N0,3

M2,0 * N1,2M2,0 * N0,2

M1,0 * N1,1M1,0 * N0,1

M0,0 * N1,0M0,0 * N0,0

P1,0

thread1,0

P0,0

thread0,0

M3,1 * N1,3

M2,1 * N1,2

M1,1 * N1,1

M0,1 * N1,0

P1,1

thread1,1

M3,1 * N0,3

M2,1 * N0,2

M1,1 * N0,1

M0,1 * N0,0

P0,1

thread0,1

M3,0 * N1,3M3,0 * N0,3

M2,0 * N1,2M2,0 * N0,2

M1,0 * N1,1M1,0 * N0,1

M0,0 * N1,0M0,0 * N0,0

P1,0

thread1,0

P0,0

thread0,0

Access
order

62

Breaking Md and Nd into TilesBreaking Md and Nd into Tiles

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

63

Each phase of a Thread Block uses one tile from Md and one from NdEach phase of a Thread Block uses one tile from Md and one from Nd

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,3
↓
Nds1,1

Md3,1
↓
Mds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,1
↓
Nds1,1

Md1,1
↓
Mds1,1

T1,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,3
↓
Nds0,1

Md2,1
↓
Mds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,1
↓
Nds0,1

Md0,1
↓
Mds0,1

T0,1

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,2

↓
Nds1,0

Md3,0

↓
Mds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,0

↓
Nds1,0

Md1,0

↓
Mds1,0

T1,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,2
↓
Nds0,0

Md2,0
↓
Mds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,0
↓
Nds0,0

Md0,0
↓
Mds0,0

T0,0

Phase 2Phase 1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,3
↓
Nds1,1

Md3,1
↓
Mds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Nd1,1
↓
Nds1,1

Md1,1
↓
Mds1,1

T1,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,3
↓
Nds0,1

Md2,1
↓
Mds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Nd0,1
↓
Nds0,1

Md0,1
↓
Mds0,1

T0,1

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,2

↓
Nds1,0

Md3,0

↓
Mds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Nd1,0

↓
Nds1,0

Md1,0

↓
Mds1,0

T1,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,2
↓
Nds0,0

Md2,0
↓
Mds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Nd0,0
↓
Nds0,0

Md0,0
↓
Mds0,0

T0,0

Phase 2Phase 1

time

64

First-order Size Considerations in G80First-order Size Considerations in G80

● Each thread block should have many threads
● TILE_WIDTH of 16 gives 16*16 = 256 threads

● There should be many thread blocks
● A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

● Each thread block performs 2*256 = 512 float loads from
global memory for 256 * (2*16) = 8,192 mul/add operations.
● Memory bandwidth no longer a limiting factor

65

CUDA Code – Kernel Execution ConfigurationCUDA Code – Kernel Execution Configuration

// Setup the execution configuration
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,

 Width / TILE_WIDTH);

// Setup the execution configuration
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,

 Width / TILE_WIDTH);

66

Tiled Matrix Multiplication KernelTiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
 __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared__float Nds[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
// Identify the row and column of the Pd element to work on
 int Row = by * TILE_WIDTH + ty;
 int Col = bx * TILE_WIDTH + tx;
 float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
 for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
 Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
 Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
 __syncthreads();
 . for (int k = 0; k < TILE_WIDTH; ++k)
 Pvalue += Mds[ty][k] * Nds[k][tx];
 __syncthreads();
 }
 Pd[Row*Width+Col] = Pvalue;
}

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
 __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared__float Nds[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
// Identify the row and column of the Pd element to work on
 int Row = by * TILE_WIDTH + ty;
 int Col = bx * TILE_WIDTH + tx;
 float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
 for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
 Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
 Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
 __syncthreads();
 . for (int k = 0; k < TILE_WIDTH; ++k)
 Pvalue += Mds[ty][k] * Nds[k][tx];
 __syncthreads();
 }
 Pd[Row*Width+Col] = Pvalue;
}

67

Tiled MultiplyTiled Multiply

● Each block computes one square sub-
matrix Pd

sub
 of size TILE_WIDTH

● Each thread computes one element of
Pd

sub

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

1

2

1

0

TI
LE

_W
ID

TH
TI

LE
_W

ID
TH

TI
LE

_W
ID

TH
E

W
ID

TH
W

ID
TH

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
012

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

TI
LE

_W
ID

TH
TI

LE
_W

ID
TH

T
IL

E
_W

ID
T

H

W
ID

TH
W

ID
TH

m

kbx

by

k

m

68

G80 Shared Memory and ThreadingG80 Shared Memory and Threading

● Each SM in G80 has 16KB shared memory
● SM size is implementation dependent!
● For TILE_WIDTH = 16, each thread block uses 2*256*4B =

2KB of shared memory.
● Can potentially have up to 8 Thread Blocks actively executing

● This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256
threads per block)

● The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB
shared memory usage per thread block, allowing only up to two
thread blocks active at the same time

● Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16
● The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6

GFLOPS!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

