
1

Distributed ProgrammingDistributed Programming

● What is distributed programming?
● What are some problems it’s used for?
● How is it organized?

● Multiple computers under the same management
● Multiple computers run by different entities

● What are issues that must be solved?
● Examples

● Seti@Home / BOINC
● Google’s map/reduce
● Teraflop-scale processors

2

What Is It Used for?What Is It Used for?

● Large-scale scientific problems
● Finite element models: simulate reality by following the laws of

physics at each of millions of points
● Weather modeling
● Structural analysis
● Earthquakes

● Biochemistry models (protein folding, DNA sequencing)
● Large-scale searching

● Internet
● Store and search a piece of the Web on each node
● Results are combined and returned

● Signal processing
● Look for features in terabytes of signal

3

History of High-Performance ComputingHistory of High-Performance Computing

● 1946: ENIAC (Electronic Numerical Integrator And
Computer)

● 1960: Network of vacuum-tube computers US Air Force
(SAGE)

● 1985-95: Supercomputers (Convex, Cray, Thinking
Machines)

● 1985: VAX VMS clusters by Digital Equipment Corporation
● 1990: Clusters of Unix workstations (HP, SGI, SUN)
● 1990-95: Transputers by Inmos and Parsytec
● 1995-00: Beowulf concept: Linux based low budget PC's
● 2000-: Linux clusters: Linux based (very) high budget PC's

4

ENIACENIAC

5

Osaka University Vacuum Tube ComputerOsaka University Vacuum Tube Computer

6

CRAY X-MP/24CRAY X-MP/24

7

Beowulf Clusters 1Beowulf Clusters 1

● Beowulf: Name of the first Linux cluster by NASA in 1994
● Main goal: high and reliable computing power at low costs
● Features:

● Based upon standard off-the-shelf Intel PCs
● Operating system Linux (sometimes with special drivers)
● Dedicated interconnecting network (no external traffic allowed)
● Master server accessible from outside and through

monitor/keyboard
● Other nodes (Slaves) only equipped with a network card
● Master NFS shared file system: code transparent on all slaves
● Message passing software: mostly MPI and PVM

8

Beowulf Clusters 2Beowulf Clusters 2

● Advantages
● Hardware cheap compared with workstations or

supercomputers
● Software is mostly open source and free (Linux, MPI, PVM,

GCC)
● Easy to expand with new systems or join with other clusters
● Many choices for the interconnecting network
● Very reliable and stable (but depends on hardware)

● Disadvantages
● PC hardware less reliable than workstation or supercomputer
● Depending on network: higher latencies (e.g. for TCP/IP)
● Failure detection on cluster nodes difficult (no

monitor/keyboard)
● Single entry point: only master accessible from outside

9

Beowulf Clusters 3Beowulf Clusters 3

● Types of interconnecting networks
● Serial or RS323 port connections or SLIP (0.1 Mb/s , 100 ms)
● Parallel port connections or PLIP (1 Mb/s , 100 ms)
● Ethernet 10Mbit, 100Mbit (10-100 Mb/s , 100 μs)
● Ethernet Gigabit (1 Gb/s , 200 μs)
● Shared versus Switched network routers
● Dedicated low latency network cards:

● Myrinet (10 Gb/s, 2 μs) and Infiniband (2 Gb/s/channel, 1 μs)

10

Computing Cluster at The American Museum of Natural Computing Cluster at The American Museum of Natural
History in New York CityHistory in New York City

11

Cluster of PCs at The ORNL - The Stone Souper ComputerCluster of PCs at The ORNL - The Stone Souper Computer

12

HP BladeSystem c7000 Populated with 16 BladesHP BladeSystem c7000 Populated with 16 Blades

13

IBM Roadrunner - 1.1 Petaflop SupercomputerIBM Roadrunner - 1.1 Petaflop Supercomputer

12,960 IBM PowerXCell 8i CPUs and 6,480 AMD Opteron dual-core processors

14

IBM Roadrunner - Schematic of A TriBladeIBM Roadrunner - Schematic of A TriBlade

15

Organizing Distributed ProgramsOrganizing Distributed Programs

● Several available programming styles
● Message-passing
● Object-based
● “Work packets”

● Each is best suited for different kinds of problems
● Often, there’s overlap between programming styles
● Choice depends on how tightly coupled the program must be

16

CouplingCoupling

● Coupling is the amount of coordination that individual nodes
must have with each other

● Loosely coupled: not much coordination
● Task can be neatly divided into pieces
● Individual pieces don’t have much to do with one another
● Results combined at the end

● Tightly coupled: closer coordination between nodes
● Intermediate results depend on those from other nodes
● Communication occurs frequently
● Nodes need to be somewhat synchronized so one node

doesn’t get ahead of others

17

Message PassingMessage Passing

● Work divided among nodes
● Nodes communicate via messages as needed

● MPI (Message Passing Interface) commonly used
● Messages used to

● Synchronize nodes
● Parcel out work
● Communicate intermediate results

● Code on individual nodes often, but not always the same
● Typically, data is divided among nodes
● Sometimes, functionality is divided

● Mail filtering and delivery
● Large-scale web service (DB, session handling, page serving)

18

Distributed ObjectsDistributed Objects

● Similar to message passing
● Each object does its own processing locally
● Remote methods work like you’d expect

● Remote objects run computations
● Typically slower for large-scale computations

● Distributed objects usually synchronous
● Easier to move data rather than moving small chunks of

computation
● May get used in systems where function is different for each

node

19

““Work Packets”Work Packets”

● Computation divided into many small independent pieces
● Monte Carlo simulation
● SETI
● Large number factoring (decryption)

● Each node takes some units of work
● Units are independent
● Node completes them, reports back to coordinator

● Coordinator tracks who’s doing what
● Reschedules work that hasn’t been done yet
● Failures handled by redoing work units

20

Distributed Computing OrganizationDistributed Computing Organization

● Computers largely identical
● Owned by a single organization
● Configured the same way
● Comparable abilities (speed, I/O, etc.)

● Computers somewhat different
● Controlled by a single organization
● Configured similarly
● May have widely disparate abilities or network speeds

● Computers unrelated
● Owned by different organizations
● Configured differently
● About the only constant is free CPU time

21

Identical ComputersIdentical Computers

● Often called parallel computing, especially if nodes
connected by high-speed networks

● Same environment everywhere
● Tools & binaries available on every node
● File system looks the same everywhere

● Security provided by
● Single username across nodes
● Security at the “front door”

● Good for large-scale scientific workloads
● Typically very expensive!

22

Similar ComputersSimilar Computers

● Computers under single administrative domain
● Similar available resources (users, files)
● No worries about malicious nodes that might corrupt results

● Computers have different capabilities
● Some nodes are much faster than others
● Computation can’t proceed in “lock-step”
● Need to take differences into account in scheduling

● May be able to use spare cycles on workstations along with
“centralized” resources
● “Night-time supercomputer”

● Jobs managed centrally
● Good fit for loosely coupled problems

23

Unrelated ComputersUnrelated Computers

● No common configuration or administration
● Different user name at each location
● No set of common resources except those brought along

explicitly
● Capabilities wildly different

● Security issues
● Malicious nodes might run the program incorrectly
● Malicious nodes might steal your data!

● Communication can be dicey
● Nodes may have slow network connections (or even fail)
● Failures have to be handled by a coordinator

● Typically only done with “work units”

24

Issue: Dividing The ProblemIssue: Dividing The Problem

● Need to take a big problem and chop it up
● Divide it arbitrarily

● Job has n things that need to be done
● Divide it up “physically”

● Usually works with problems that simulate the real world
● Pieces correspond to regions of the phenomenon being

simulated
● May run into problems if some pieces are harder than others

● Divide it up into multiple runs
● May rerun the same simulation lots of times (Monte Carlo

method)
● Simulations are largely independent

25

Issue: Combining The ResultsIssue: Combining The Results

● Each node does a small part of the work
● Results need to be combined

● Assembled: “concatenate” results together with no additional
processing: common for physical problems

● Reduced: results from individual nodes are “merged”
● Search
● Simulations

● This part of the program is difficult to speed up

26

Issue: CoordinationIssue: Coordination

● Distributed systems have to work together
● Who decides how they do this?
● Single (central) coordinator

● Simple to program
● Less efficient: central bottleneck
● Prone to failure

● Multiple central coordinators
● Must coordinate amongst themselves
● More scalable than single coordinator

● Fully distributed: nodes coordinate amongst themselves
● Difficult to program
● Most efficient approach

27

Issue: Running CodeIssue: Running Code

● Every node needs to run the right code!
● Easy in a tightly coupled system
● Difficult in a loosely coupled system, especially if it’s run by

multiple organizations
● Solution: require each node to run code that loads other

code as needed
● Java Virtual Machine
● Local daemon that downloads binaries as needed

● Solution: use a distributed file system
● Every node can get the code it needs
● Use the Web for this…

28

Issue: SecurityIssue: Security

● Two security challenges
● Protect system from code running on it
● Protect running code from the rest of the system

● Protecting the system from the distributed code
● Trust the code?

● Big risk
● Limit privileges

● Run as a user that has few (if any) abilities on the system
● Restrict CPU usage

● Protecting the distributed code from the system
● Prevent data and computation from corruption
● Prevent the system from stealing the data (yes, this is a real

issue in many distributed systems)

29

Google’s distributed Web indexGoogle’s distributed Web index

● Google has an index of the entire Internet (or at least a lot of
it)

● Index is too large to fit on a single machine
● Hundreds of terabytes of data
● Thousands of disks

● Too much activity for only a single server
● Need to divide the problem up
● Handle requests on multiple servers

● Divide up data and requests

30

Google’s ApproachGoogle’s Approach

● Divide Web index by batches of pages
● Crawl the Web continuously
● Each set of pages is on a single machine
● Each machine has indices for all words in those pages

● Queries go to all machines
● Quickly search individual machines for set of pages
● Results merged separately

● Failures handled by ignoring that part of the Web
● It’ll be recrawled soon anyway
● Recently, some redundancy was included

31

Google’s Map/ReduceGoogle’s Map/Reduce

● Google’s approach is called map/reduce
● Computation is mapped to all of the nodes
● Results from all nodes are combined (reduced) into a single

result set
● Uses specialized coordinators to do it

● Google has techniques to do this quickly!
● Make individual nodes fast
● Redo computations that fail (or just don’t respond)

● Google’s file system is optimized for this
● Special operations for appending to large files
● Optimized for dealing with gigabyte files
● Not good for smaller stuff….

32

Berkeley Open Infrastructure for Network ComputingBerkeley Open Infrastructure for Network Computing

● BOINC is a system for doing distributed computation across
a large set of unrelated nodes
● Distribute small units of computation to individual (home)

computers
● Gather results from them

● Platform is designed to run any software that can break up
computation this way
● SETI
● Protein folding
● Climate change

33

BOINC DetailsBOINC Details

● Jobs divided into very small tasks
● Search a small portion of the sky
● Try several protein folding combinations

● Clients download
● Software for a particular task
● List of small tasks to run
● Data for the small tasks

● Clients run the software on the small tasks
● Respond back with results when they’re finished

● Coordinator ships out tasks and collates results
● Often hands tasks to multiple computers

● Check accuracy
● Deal with failure

34

More on BOINCMore on BOINC

● System is open: others can create new programs to run
across the world

● System runs on multiple platforms
● Deal with byte ordering
● Different assembly languages (PowerPC, x86, etc.)
● Wide range of different speeds

● Reliability isn’t so great
● Must be very loosely coupled

● No guarantee on how long each task will take
● Communication may be spotty
● Data is not sensitive (no worry about client stealing it)

35

Communication in Distributed SystemsCommunication in Distributed Systems

● Lack of shared memory, necessity to send messages
● Basic operations: Send() and Receive()

● Client sends a request and waits for an answer
● Server receives the request and sends a response

● Messages can be reliable or unreliable (when unreliable,
higher layer must provide reliability of transmission)

● Can be based on a specialized protocol or a general-
purpose protocol (such as TCP/IP)

36

OSI Reference ModelOSI Reference Model

37

April 1st, 1990 - RFC 1149April 1st, 1990 - RFC 1149

Standard for the transmission of IP datagrams on avian carriers
Implementation: http://www.blug.linux.no/rfc1149/

Script started on Sat Apr 28 11:24:09 2001
vegard@gyversalen:~$ /sbin/ifconfig tun0
tun0 Link encap:Point-to-Point Protocol
 inet addr:10.0.3.2 P-t-P:10.0.3.1 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:150 Metric:1
 RX packets:1 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0
 RX bytes:88 (88.0 b) TX bytes:168 (168.0 b)

vegard@gyversalen:~$ ping -i 900 10.0.3.1
PING 10.0.3.1 (10.0.3.1): 56 data bytes
64 bytes from 10.0.3.1: icmp_seq=0 ttl=255 time=6165731.1 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=255 time=3211900.8 ms
64 bytes from 10.0.3.1: icmp_seq=2 ttl=255 time=5124922.8 ms
64 bytes from 10.0.3.1: icmp_seq=1 ttl=255 time=6388671.9 ms

--- 10.0.3.1 ping statistics ---
9 packets transmitted, 4 packets received, 55% packet loss
round-trip min/avg/max = 3211900.8/5222806.6/6388671.9 ms
vegard@gyversalen:~$ exit

Script done on Sat Apr 28 14:14:28 2001

38

Implementation of LayersImplementation of Layers

Application
layer

Conversion
layer

Packet
layer

Frame
layer

Physical
layer

Frame Hdr

Pkt Hdr

Message

Converted Message

First Pkt Pkt Hdr Second Pkt

Pkt Hdr First Pkt Frame Hdr Pkt Hdr Second Pkt

Frames sent out onto network

Information Transfer

Presentation
Session
Transport

39

Exercise 1Exercise 1

● Implement a server computing roots of real numbers and
providing current date and time on server

● Based on TCP protocol
● To ensure portability between different processors, transmit

all numbers in Big Endian format
● RQ ID allows to distinguish different requests

0 0 0 1 RQ ID Number (IEEE double)

1 0 0 1 RQ ID Root (IEEE double)

Request for square root:

Response:

40

Exercise 1Exercise 1

● Date and time sent in textual form, without terminating zero
● Length sent in Big Endian format
● During one connection several requests can be sent
● Order of responses can be different than order of requests

0 0 0 2 RQ ID

Request for time and date:

1 0 0 2 RQ ID

Response:

Length (BE) Time and date

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

