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MPIMPI

● Introduction to MPI
● What it is
● Where it came from

● MPI overview
● Point-to-point communication
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Large-Scale Scientific ComputingLarge-Scale Scientific Computing

● Goal: delivering computing performance to applications
● Deliverable computing power (in flops)

● Current leader is the Roadrunner
● 13000 computing processors, over 1 petaflop

● Parallelism taken for granted
● Fortunately, physics appears to be parallel
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Parallel Programming ResearchParallel Programming Research

● Independent research projects contribute new ideas to 
programming models, languages, and libraries
● Most make a prototype available and encourage use by others
● Users require commitment, support, portability
● Not all research groups can provide this

● Failure to achieve critical mass of users can limit impact of 
research
● PVM (and few others) succeeded
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StandardizationStandardization

● Parallel computing community has resorted to “community-
based” standards
● HPF
● MPI
● OpenMP

● Some commercial products are becoming “de facto” 
standards, but only because they are portable
● TotalView parallel debugger, PBS batch scheduler
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Standardization BenefitsStandardization Benefits

● Multiple implementations promote competition
● Vendors get clear direction on where to devote effort
● Users get portability for applications
● Wide use consolidates the research that is incorporated into 

the standard
● Prepares community for next round of research
● Rediscovery is discouraged
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Risks of StandardizationRisks of Standardization

● Failure to involve all stakeholders can result in standard 
being ignored
● Application programmers
● Researchers
● Vendors

● Premature standardization can limit production of new ideas 
by shutting off support for further research projects in the 
area
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Models for Parallel ComputationModels for Parallel Computation

● Shared memory (load, store, lock, unlock)
● Message Passing (send, receive, broadcast, ...)
● Transparent (compiler works magic)
● Directive-based (compiler needs help)
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The Message-Passing ModelThe Message-Passing Model

● A process is (traditionally) a program counter and address 
space

● Processes may have multiple threads (program counters 
and associated stacks) sharing a single address space

● Message passing is for communication among processes, 
which have separate address spaces

● Interprocess communication consists of 
● Synchronization
● Movement of data from one process’s address space to 

another’s
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What is MPI?What is MPI?

● A message-passing library specification
● Extended message-passing model
● Not a language or compiler specification
● Not a specific implementation or product

● For parallel computers, clusters, and heterogeneous 
networks

● Full-featured
● Designed to provide access to advanced parallel hardware 

for end users, library writers, and tool developers
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Where Did MPI Come From?Where Did MPI Come From?

● Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) 
were not portable (or very capable)

● Early portable systems (PVM, p4, TCGMSG, Chameleon) 
were mainly research efforts
● Did not address the full spectrum of issues
● Lacked vendor support
● Were not implemented at the most efficient level

● The MPI Forum organized in 1992 with broad participation 
by:
● Vendors:  IBM, Intel, TMC, SGI, Convex, Meiko
● Portability library writers:  PVM, p4
● Users:  application scientists and library writers
● MPI-1 standard finished in 18 months
● MPI-2 standard finished in 1996
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Novel Features of MPINovel Features of MPI

● Communicators encapsulate communication spaces for 
library safety

● Datatypes reduce copying costs and permit heterogeneity
● Multiple communication modes allow precise buffer 

management
● Extensive collective operations for scalable global 

communication
● Process topologies permit efficient process placement, user 

views of process layout
● Profiling interface encourages portable tools
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Problem DecompositionProblem Decomposition

● Domain decomposition
● Also known as data parallelism
● Data are divided into pieces that are approximately the same 

size and then mapped to different processors. 
● Each processor works only on the portion of the data that is 

assigned to it. 
● The processes may need to communicate periodically in order 

to exchange data.
● Domain decomposition provides the advantage of maintaining 

a single flow of control. A data-parallel algorithm consists of a 
sequence of elementary instructions applied to the data: an 
instruction is initiated only if the previous instruction is ended.
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Problem DecompositionProblem Decomposition

● Functional Decomposition
● Useful when, for example, the individual subsets of data 

assigned to the different processes require greatly different 
lengths of time to process.

● Client-server paradigm.
● The tasks are allocated to a group of slave processes by a 

master process that may also perform some of the tasks.
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Load BalancingLoad Balancing

● Load balancing divides the required work equally among all 
of the available processes.

● This ensures that one or more processes do not remain idle 
while the other processes are actively working on their 
assigned subproblems so that valuable computational 
resources are not wasted.

● Load balancing can be easy when the same operations are 
being performed by all the processes on different pieces of 
data.

● It is not trivial when the processing time depends upon the 
data values.
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Execution TimeExecution Time

● A primary concern in parallel programming because it is an 
essential component for comparing and improving all 
programs. Three components make up execution time:
● Computation time
● Idle time
● Communication time

● Latency
● Bandwidth
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Process Idle TimeProcess Idle Time

● It is important to minimize the time that processes remain 
idle to reduce the impact on execution time.
● One strategy is to use overlapping communication and 

computation, which is termed latency hiding.
● This method involves occupying a process with one or more 

new tasks while it waits for a communication event to complete 
so it can proceed to another task.
● Non-blocking communication
● Data-unspecific computation
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Game of LifeGame of Life

● A simple simulation developed by John Conway
● 2-dimensional array of cells
● Each cell can have one of two possible states, usually 

referred to as "alive" or "dead"
● At each time step, each cell may or may not change its 

state, based on the number of adjacent alive cells, including 
diagonals
● If a cell has three neighbors that are alive, the cell will be alive. 

If it was already alive, it will remain so, and if it was dead, it will 
become alive.

● If a cell has two neighbors that are alive, there is no change to 
the cell. If it was dead, it will remain dead, and if it was alive, it 
will remain alive.

● In all other cases — the cell will be dead.
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Game of LifeGame of Life

Periodic boundary conditionsCell birth and death examples
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MPI OverviewMPI Overview

● A MPI program consists of two or more autonomous 
processes
● Each executing their own codes
● Code may or may not be identical on a given pair of processes.

● These processes communicate via calls to MPI 
communication routines

● They are identified according to their relative rank within a 
group (0, 1, . . . , groupsize-1). 

● MPI does not allow for dynamic allocation of processes 
during the execution of a parallel program. 

● You specify the number of processes at the start of your 
program and that number remains fixed throughout the 
entire program.
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Point-to-Point CommunicationsPoint-to-Point Communications
● Direct communication between two processors, one of 

which sends data and the other receives this same data.
● In a generic send or receive, a message consisting of some 

block of data is transferred between processors. 
● An envelope indicates the source and destination processors
● A body that contains the actual data to be sent

● MPI uses the following three pieces of information to 
characterize the message body in a flexible way:
● Buffer - the starting location in memory where outgoing data is 

to be found or incoming data is to be stored
● Datatype - the type of data to be sent. 

● Elementary type such as float (REAL), int (INTEGER)
● A user-defined datatype built from the basic types.

● Count - the number of items of type datatype to be sent.
● MPI deals with big/little endian issues etc.
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Communication Modes and Completion CriteriaCommunication Modes and Completion Criteria
●  A variety of communication modes define the procedure 

used to transmit the message, as well as a set of criteria for 
determining when the communication event is complete.
● A synchronous send is defined to be complete when receipt of 

the message at its destination has been acknowledged. 
● A buffered send, is complete when the outgoing data has been 

copied to a local buffer.
● Nothing at all is implied about the arrival of the message at its 

destination.
● In all cases, completion of a send implies that it is safe to 

overwrite the buffer where the data were originally stored.
● There are four communication modes available for sends:

● Standard
● Synchronous
● Buffered
● Ready
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Blocking and Nonblocking CommunicationBlocking and Nonblocking Communication
● A blocking send or receive does not return from the 

subroutine call until the operation has actually completed. 
Thus it ensures that the relevant completion criteria have 
been satisfied before the calling process is allowed to 
proceed.

● A nonblocking send or receive returns immediately with no 
information about whether the completion criteria have been 
satisfied.
● This approach has the advantage that the processor is free to 

do something else while the communication proceeds in the 
background.

● You can test later to see whether the communication has 
actually completed. 

● A nonblocking synchronous send returns immediately, 
although the send will not be complete until receipt of the 
message has been acknowledged.
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Collective CommunicationsCollective Communications

● A communicator is an MPI object that defines a group of 
processes that are permitted to communicate with one 
another. 
● Every MPI message must specify a communicator via a “name” 

that is included as an explicit parameter within the argument list 
of the MPI call.

● By default, all processes are defined as being members of the 
communicator MPI_COMM_WORLD.

● Collective communication routines, also called collective 
operations, transmit data among all processes in a group.
● These routines allow larger groups of processors to 

communicate in various ways, for example, one-to-several or 
several-to-one. 

● All collective communication events are blocking.
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Collective CommunicationsCollective Communications

● There are three basic types of collective communication 
events in MPI.
● Synchronization - each process waits until all processes 

included within its group have reached the specified 
synchronization point.

● Data movement - data is transferred to all processes included 
within its group.

● Collective computation — one process within a group collects 
data from other processes within that group and performs an 
operation (addition, multiplication, etc.) on that data.
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Collective CommunicationsCollective Communications

● The main advantages of using the collective communication 
routines over building the equivalent operation out of point-
to-point communications are:
● The possibility of error is significantly reduced. A single line of 

code - the call to the collective routine - typically replaces 
several point-to-point calls.

● The source code is much more readable, thus simplifying code 
debugging and maintenance.

● Optimized forms of the collective routines are often faster than 
the equivalent operation expressed in terms of point-to-point 
routines.
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Broadcast OperationsBroadcast Operations

● A single process sends a copy of some data to all the other 
processes in a group.

● Each row in the figure represents a different process. Each 
colored block in a column represents the location of a piece 
of the data. Blocks with the same color that are located on 
multiple processes contain copies of the same data.
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Scatter and Gather OperationsScatter and Gather Operations

● MPI provides two kinds of scatter and gather operations, 
depending upon whether the data can be evenly distributed 
across processors.
● In a scatter operation, all of the data (an array of some type) 

are initially collected on a single processor. After the scatter 
operation, pieces of the data are distributed on different 
processors

● The gather operation is the inverse operation to scatter: it 
collects pieces of the data that are distributed across a group of 
processors and reassembles them in the proper order on a 
single processor. 
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Scatter and Gather OperationsScatter and Gather Operations

● The multicolored box reflects the possibility that the data may 
not be evenly divisible across the processors.
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Reduction OperationsReduction Operations

● Collective operations in which a single process (the root 
process) collects data from the other processes in a group 
and performs an operation on that data, which produces a 
single value.
● You might use a reduction to compute the sum of the elements 

of an array that is distributed across several processors.
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Process GroupsProcess Groups

● A process group is simply an ordered set of processes 
where each process in a group is associated with a unique 
integer value referred to as the rank of the process.
● A process rank is also referred to as the process "ID."
● Rank values in MPI always start at zero and run sequentially 

through N-1, where N is the number of processes in the group.
● Although the number of processes specified in an MPI 

program remains fixed throughout the program, both groups 
and communicators can be dynamically created and 
eliminated during the execution of the program.

● A given process can be a member of more than one group 
or communicator and will have a unique rank within each 
group or communicator.
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Process TopologiesProcess Topologies

● In MPI, a topology is a mechanism for associating different 
identification schemes with the processes belonging to a 
particular group.
● A topology describes a mapping or ordering of MPI processes 

into some geometric shape.
● MPI supports two main types of topologies

● A Cartesian, or grid, topology
● A graph topology.



32

Process TopologiesProcess Topologies

● All MPI topologies are virtual
● There may be no simple relation between the process structure 

implicit in the MPI topology and the actual underlying physical 
arrangement of the processors within the computer itself.

● Virtual topologies are used in MPI to provide communication 
efficiency and for programming convenience.
● A Cartesian or grid topology is likely to be convenient in an 

application involving nearest-neighbor communication between 
points on a rectangular grid.



33

Environment Management and InquiryEnvironment Management and Inquiry

● A number of MPI routines are available for managing and 
inquiring about the state of the environment.

● They are used for a number of purposes, such as:
● Initializing and terminating the MPI execution environment
● Terminating all processes belonging to a given MPI 

communicator
● Determining the number of processes belonging to a given 

communicator
● Determining the rank of the calling process within a given 

communicator
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  MPI Program StructureMPI Program Structure
● Header file

● #include <mpi.h>
● Naming convention

● MPI_Xxxxx(parameter, ... )
● Return values

int err;
err = MPI_Init(&argc, &argv);
if (err == MPI_SUCCESS) {
   ...routine ran correctly...
   }

● MPI Handles
● MPI defines and maintains its own internal data structures.
● These data structures are referenced through handles, which 

are returned by various MPI calls and may be used as 
arguments in other MPI calls.

● In C, handles are pointers to specially defined datatypes that 
are created via the C typedef mechanism
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MPI DatatypesMPI Datatypes

● MPI allows automatic translation between representations in 
a heterogeneous environment by providing its own 
reference datatypes corresponding to the various 
elementary datatypes in C and Fortran.

● Variables are normally declared as C/Fortran types and MPI 
type names are used as arguments in MPI routines when a 
type is needed.

● As a general rule, the MPI datatype given in a receive must 
match the MPI datatype specified in the send. MPI hides the 
details of the floating-point representation, which is an issue 
for the implementor so you will need to see the vendor's 
documentation for more detail.

● MPI allows for the definition of arbitrary datatypes, called 
derived datatypes, that are built from the basic types.
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Basic MPI DatatypesBasic MPI Datatypes

MPI Datatype C Type

MPI_CHAR signed char

MPI_SHORT signed short

MPI_INT signed int

MPI_LONG signed long

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE none

MPI_PACKED none
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Initializing MPIInitializing MPI

● The initialization routine MPI_INIT must be the first MPI 
routine called in any MPI program.

● This routine establishes the MPI environment and will return 
an error code if there is a problem.

● MPI_INIT may be called only once in any program.
int err;
...
err = MPI_Init(&argc, &argv);

● The arguments to MPI_Init are the addresses of argc and 
argv, the variables that contain the command-line 
arguments for the program. 
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CommunicatorsCommunicators

● A communicator is a MPI handle that defines a group of 
processes that are permitted to communicate with one 
another.
● Every MPI message must specify a communicator via a name 

that is included as an explicit parameter within the argument list 
of the MPI call.

● The communicator specified in the send and receive calls must 
agree for communication to take place.
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CommunicatorsCommunicators

● There can be many communicators, and a given processor 
can be a member of a number of different communicators.
● Within each communicator, processors are numbered 

consecutively (starting at 0).
● This identifying number is known as the rank of the processor in 

that communicator
● The rank is also used to specify the source and destination in 

send and receive calls.
● If a processor belongs to more than one communicator, its rank in 

each can (and usually will) be different.
● MPI automatically provides a basic communicator called 

MPI_COMM_WORLD, consisting of all processors. 
● Using MPI_COMM_WORLD, every processor can 

communicate with every other processor. 
● You can define additional communicators consisting of subsets 

of the available processors.
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Getting Communicator Information: RankGetting Communicator Information: Rank

● A processor can determine its rank in a communicator with a 
call to MPI_COMM_RANK.
● Ranks are consecutive and start with 0.
●  A given processor may have different ranks in the various 

communicators to which it belongs.
int MPI_Comm_rank(MPI_Comm comm, int *rank);

● the argument comm is a variable of type MPI_COMM, a 
communicator. 

● You could use MPI_COMM_WORLD here or alternatively, you 
could pass the name of another communicator you have 
defined elsewhere. 

● Such a variable would be declared as:
MPI_Comm some_comm; 
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Getting Communicator Information: SizeGetting Communicator Information: Size

● A processor can also determine the size, i.e., number of 
processors, of any communicator to which it belongs with a 
call to MPI_COMM_SIZE.
int MPI_Comm_size(MPI_Comm comm, int *size);

● The argument comm is of type MPI_COMM, a 
communicator. The second argument is the address of the 
integer variable size.

● If the communicator is MPI_COMM_WORLD, the number of 
processors returned from MPI_COMM_SIZE equals the 
number defined by the command-line input to MPIRUN
% mpirun -np 4 a.out
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Terminating MPITerminating MPI

● MPI_FINALIZE is the last MPI routine called in a program.
● It terminates the program by cleaning up all MPI data 

structures, canceling operations that never completed, and so 
on.

● MPI_FINALIZE must be called by all processes; if any one 
process does call it, the program will appear to hang.

● Once MPI_FINALIZE has been called, no other MPI routines 
(including MPI_INIT) may be called....
err =  MPI_Finalize();
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Simple ExampleSimple Example

#include "mpi.h"
#include <stdio.h>

int main( argc, argv )
int argc;
char *argv[];
{
    int rank, size;
    MPI_Init( &argc, &argv );
    MPI_Comm_rank( MPI_COMM_WORLD, &rank );
    MPI_Comm_size( MPI_COMM_WORLD, &size );
    printf( "I am %d of %d\n", rank, size );
    MPI_Finalize();
    return 0;
}

mpicc hello.c -o hello
mpirun -np 2 ./hello



44

  Point-to-Point CommunicationPoint-to-Point Communication

● The point-to-point communication facilities are two-sided 
and require active participation from the processes on both 
sides. 
● One process (the source) sends, and another process (the 

destination) receives.
● In general, the source and destination processes operate 

asynchronously. 
● Even the sending and receiving of a single message is typically 

not synchronized.
● The source process may complete sending a message long 

before the destination process gets around to receiving it, and 
the destination process may initiate receiving a message that 
has not yet been sent. 
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MessagesMessages
● Messages consist of two parts:

● the envelope
● the message body.

● The envelope of an MPI message has four parts:
● Source - the sending process
● Destination - the receiving process
● Communicator - specifies a group of processes to which both 

source and destination belong
● Tag - used to classify messages

● The tag field is required, but its use is left up to the program.
● A pair of communicating processes can use tag values to 

distinguish classes of messages.
● One tag value can be used for messages containing data 

and another tag value for messages containing status 
information.
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MessagesMessages

● The message body has three parts:
● Buffer - the message data
● Datatype - the type of the message data
● Count - the number of items of type datatype in buffer

● Think of the buffer as an array; the dimension is given by 
count, and the type of the array elements is given by 
datatype.

● Using datatypes and counts, rather than bytes and 
bytecounts, allows structured data and noncontiguous data 
to be handled smoothly.

● It also allows transparent support of communication 
between heterogeneous hosts. 
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Sending and Receiving MessagesSending and Receiving Messages

● The source (the identity of the sender) is determined 
implicitly, but the rest of the message (envelope and body) 
is given explicitly by the sending process.

● Sending and receiving are typically not synchronized.
● Processes often have one or more messages that have been 

sent but not yet received.
● These messages that have not yet been received are called 

pending messages.
● Pending messages are not maintained in a simple FIFO queue.

● Each pending message has several attributes and the destination 
process (the receiving process) can use the attributes to 
determine which message to receive.
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Sending and Receiving MessagesSending and Receiving Messages

● To receive a message, a process specifies a message 
envelope that MPI compares to the envelopes of pending 
messages.
● If there is a match, a message is received.
● Otherwise, the receive operation cannot be completed until a 

matching message is sent.
● The process receiving a message must provide storage into 

which the body of the message can be copied.
● The receiving process must be careful to provide enough 

storage for the entire message. 
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Blocking Send and ReceiveBlocking Send and Receive

● The basic point-to-point communication routines in MPI are 
MPI_SEND and MPI_RECV.

● Both routines block the calling process until the 
communication operation is completed.
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Sending a Message: MPI_SENDSending a Message: MPI_SEND
● MPI_SEND takes the following arguments:

● Message body:
● buffer
● count
● datatype

● Message envelope:
● destination
● tag
● communicator

● The message body contains the data to be sent: count items 
of type datatype ,the message envelope tells where to send 
it.

● In addition, an error code is returned.
int MPI_Send(void *buf, int count, 
MPI_Datatype dtype, int dest, int tag, 
MPI_Comm comm);
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Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

● MPI_RECV takes a set of arguments similar to MPI_SEND, 
but several of the arguments are used in a different way.
● Message body:

● buffer
● count
● datatype

● Message envelope:
● source
● tag
● communicator

● The arguments in the message envelope determine what 
messages can be received by the call.
● The source, tag, and communicator arguments must match 

those of a pending message in order for the message to be 
received.
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Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

● Wildcard values may be used for the source (accept a 
message from any process) and the tag (accept a message 
with any tag value).

● If wildcards are not used, the call can accept messages only 
from the specified sending process and with only the 
specified tag value.

● Communicator wildcards are not available.
● The message body arguments specify where the arriving 

data are to be stored, what type it is assumed to be, and 
how much of it the receiving process is prepared to accept.
● If the received message has more data than the receiving 

process is prepared to accept, it is an error and the program 
will abort.
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Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

● In general, the sender and receiver must agree about the 
message datatype, and it is your responsibility to guarantee 
that agreement.
● If the sender and receiver use incompatible message 

datatypes, the results are undefined.
● The status argument returns information about the message 

that was received. The source and tag of the received 
message are available this way, which is needed if 
wildcards were used, and also available is the actual count 
of data received. In addition, an error code is returned.
int MPI_Recv(void *buf, int count, 
MPI_Datatype dtype, int source, int tag, 
MPI_Comm comm, MPI_Status *status);

● buf and status are output arguments; the rest are inputs.
● An error code is returned by the function.
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Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

● Some issues on receiving messages to remember are:
● A maximum of COUNT items of type DTYPE are accepted; if 

the message contains more, it is an error.
● The sending and receiving processes must agree on the 

datatype; if they disagree, results are undefined (MPI does not 
check).

● When this routine returns, the received message data have 
been copied into the buffer; and the tag, source, and actual 
count of data received are available via the status argument
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Message Passing ExampleMessage Passing Example

/* simple send and receive */
#include <stdio.h>
#include <math.h>
#include <mpi.h>

int main (int argc, char **argv) {

  int myrank,i;
  MPI_Status status;
  double a[100],b[100];

  MPI_Init(&argc, &argv);  /* Initialize MPI */
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
  if( myrank == 0 )        /* Send a message */
  {
    for (i=0;i<100;++i)
       a[i]=sqrt(i);
    MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
  }
  else if( myrank == 1 )   /* Receive a message */
    MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );...

  MPI_Finalize();          /* Terminate MPI */
  return 0;
}
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Wildcard ReceptionWildcard Reception

● The MPI_RECV call made by Processor 1 in the previous 
example program is a completely specified reception.
● Processor 1 will only receive a message from Processor 0 with 

tag 17.
● It is possible to configure the reception so it is open to 

messages from any processor or any message tag.
● This is called wildcard reception.

● For source wildcard reception, use MPI_ANY_SOURCE for 
the source argument in MPI_RECV. 

● For tag wildcard reception use MPI_ANY_TAG for the tag 
argument in MPI_RECV. 
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Wildcard ReceptionWildcard Reception

● Once the MPI_RECV function is completed with some 
message, the destination process has little information 
about it.
● If source and tag wildcard reception were both used, the 

destination will not know where the message came from or its 
tag. 

● This "envelope" information is stored in the status variable 
and can be retrieved from it.

● The status variable is a structure containing the message 
information as members.

● The following expression is used to get the source of the 
wildcarded reception:
status.MPI_SOURCE

● To get the tag information, use the expression:
status.MPI_TAG
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Message SizeMessage Size

● The message-receive statement from our example program 
was:
MPI_Recv(b,100,MPI_DOUBLE,0,17,MPI_COMM_WORLD,
&status);

● Remember the meaning of the second argument: the 
maximum number of elements that the array b could hold, 
not necessarily the number of elements actually received.

● The sending process could have transmitted a smaller 
number.

● The message count is stored in the status variable and can 
be extracted from it.

● The auxiliary MPI function MPI_GET_COUNT is used for 
this purpose.
int MPI_Get_count(MPI_Status *status, 
MPI_Datatype dtype, int *count);



59

Example Wildcard ProgramExample Wildcard Program

#include <stdio.h>
#include <math.h>
#include <mpi.h>

int main (int argc, char **argv) {

  int myrank,i,count;
  MPI_Status status;
  double a[100],b[300];

  MPI_Init(&argc, &argv);  /* Initialize MPI */
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
  if( myrank == 0 ) {        /* Send a message */
    for (i=0;i<100;++i)
         a[i]=sqrt(i);
    MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
  }else if( myrank == 1 ){   /* Receive a message */
    MPI_Recv( b, 300, MPI_DOUBLE,MPI_ANY_SOURCE,MPI_ANY_TAG,.
                                        MPI_COMM_WORLD, &status );...
    MPI_Get_count(&status,MPI_DOUBLE,&count);
    printf("P:%d message came from rank %d\n",myrank,status.MPI_SOURCE);
    printf("P:%d message had tag %d\n",myrank,status.MPI_TAG);
    printf("P:%d message size was %d\n",myrank,count);
  }
 MPI_Finalize();          /* Terminate MPI */
 return(0);
}



60

Runtime BehaviourRuntime Behaviour

● When a message is sent using MPI_SEND one of two 
things may happen:
● The message may be copied into an MPI internal buffer and 

transferred to its destination later, in the background, or
● The message may be left where it is, in the program's 

variables, until the destination process is ready to receive it. At 
that time, the message is transferred to its destination.

● In the first case, the sending process is allowed to move on 
to other things after the copy is completed. The second case 
minimizes copying and memory use, but may result in extra 
delay to the sending process and the delay can be 
significant.
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Runtime BehaviourRuntime Behaviour

● In the first case, a call to MPI_SEND may return before any 
non-local action has been taken or even begun, i.e., before 
anything has happened that might naively be associated 
with sending a message. 

● In the second case, a synchronization between sender and 
receiver is implied.
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Blocking and CompletionBlocking and Completion

● Both MPI_SEND and MPI_RECV block the calling 
processes.
● Neither returns until the communication operation it invoked is 

completed.
● The meaning of completion for a call to MPI_RECV is simple 

and intuitive - a matching message has arrived, and the 
message's data have been copied into the output arguments 
of the call. 
● In other words, the variables passed to MPI_RECV contain a 

message and are ready to be used. 
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Blocking and CompletionBlocking and Completion

● For MPI_SEND, the meaning of completion is simple but not 
as intuitive.
● A call to MPI_SEND is completed when the message specified 

in the call has been handed off to MPI.
● In other words, the variables passed to MPI_SEND can now be 

overwritten and reused. 
● If MPI copied the message into an internal buffer, then the 

call to MPI_SEND may be officially completed, even though 
the message has not yet left the sending process.

● If a message passed from MPI_SEND is larger than MPI's 
available internal buffer, then simple, one-time buffering 
cannot be used. 
● The sending process must block until the destination process 

begins to receive the message, or until more buffer is available.
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DeadlockDeadlock

● When two (or more) processes are blocked and each is 
waiting for the other to make progress, deadlock occurs.

● Neither process makes progress because each depends on 
the other to make progress first.

● The program shown on the next slide is an example - it fails 
to run to completion because processes 0 and 1 deadlock.
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Deadlock ExampleDeadlock Example

/* simple deadlock */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {

  int myrank;
  MPI_Status status;
  double a[100], b[100];

  MPI_Init(&argc, &argv);  /* Initialize MPI */
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
  if( myrank == 0 ) {
    /* Receive, then send a message */
    MPI_Recv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status );
    MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
  }
  else if( myrank == 1 ) {
    /* Receive, then send a message */
    MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );...
    MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
  }
  MPI_Finalize();          /* Terminate MPI */
  return 0;
}
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Avoiding DeadlockAvoiding Deadlock

/* safe exchange */
#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv) {

  int myrank;
  MPI_Status status;
  double a[100], b[100];

  MPI_Init(&argc, &argv);  /* Initialize MPI */
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
  if( myrank == 0 ) {
    /* Receive a message, then send one */
    MPI_Recv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status );
    MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
  }
  else if( myrank == 1 ) {
    /* Send a message, then receive one */
    MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
    MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );...
  }

  MPI_Finalize();          /* Terminate MPI */
  return 0;
}
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Avoiding Deadlock (Sometimes)Avoiding Deadlock (Sometimes)
/* depends on buffering */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {

  int myrank;
  MPI_Status status;
  double a[100], b[100];

  MPI_Init(&argc, &argv);  /* Initialize MPI */
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
  if( myrank == 0 ) {
    /* Send a message, then receive one */
    MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
    MPI_Recv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status );
  }
  else if( myrank == 1 ) {
    /* Send a message, then receive one */
    MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
    MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );...
  }
  MPI_Finalize();          /* Terminate MPI */
  return 0;
}
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Probable DeadlockProbable Deadlock
/* probable deadlock */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {
  int myrank;
  MPI_Status status;
#define N 100000
  double a[N], b[N];

  MPI_Init(&argc, &argv);  /* Initialize MPI */
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
  if( myrank == 0 ) {
    /* Send a message, then receive one */
    MPI_Send( a, N, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
    MPI_Recv( b, N, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status );
  }
  else if( myrank == 1 ) {
    /* Send a message, then receive one */
    MPI_Send( a, N, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
    MPI_Recv( b, N, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );...
  }
  MPI_Finalize();          /* Terminate MPI */
  return 0;
}
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Nonblocking Sends and ReceivesNonblocking Sends and Receives
● MPI provides a way to invoke send and receive operations 

that does not block the calling process.
● It is possible to separate the initiation of a send or receive 

operation from its completion by making two separate calls to 
MPI.

● The first call initiates the operation, and the second call 
completes it.

● If such a separation is used, it is referred to as a non-blocking 
communication.

● Between the two calls, the program is free to perform other 
operations.

● The underlying communication operations are the same 
whether they are invoked by a single call or by two separate 
calls - one to initiate the operation and another to complete 
it. The communication operations are the same, but the 
interface to the library is different.
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Nonblocking Sends and ReceivesNonblocking Sends and Receives

● Blocking and nonblocking communication can be mixed 
together for the same data transfer.
● The source processor might use a blocking send and the 

destination process could use a nonblocking receive process, 
or vice-versa.

● Initiating a send operation is called posting a send.
● Initiating a receive operation is called posting a receive.
● Once a send or receive operation has been posted, MPI 

provides two distinct ways of completing it.
● A process can test to see if the operation has completed 

without blocking on the completion. 
● Alternately, a process can wait for the operation to complete.
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Nonblocking Sends and ReceivesNonblocking Sends and Receives

● After posting a send or receive with a call to a nonblocking 
routine, the posting process needs some way to refer to the 
posted operation. 

● MPI uses request handles for this purpose.
● Nonblocking send and receive routines all return request 

handles, which are used to identify the operation posted by the 
call.
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Posting Sends without BlockingPosting Sends without Blocking

● A process calls the routine MPI_ISEND to post (Initiate) a 
send without blocking on completion of the send operation.

● The calling sequence is similar to the calling sequence for 
the blocking routine MPI_SEND but includes an additional 
output argument, a request handle.
int MPI_Isend(void *buf, int count, 
MPI_Datatype dtype, int dest, int tag, 
MPI_Comm comm, MPI_Request *request);

● None of the arguments passed to MPI_ISEND should be 
read or written until the send operation is completed.
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Posting Receives without BlockingPosting Receives without Blocking

● A process calls the routine MPI_IRECV to post (Initiate) a 
receive without blocking on its completion.

● The calling sequence is similar to the calling sequence for 
the blocking routine MPI_RECV, but the status argument is 
replaced by a request handle.
int MPI_Irecv(void *buf, int count, 
MPI_Datatype dtype, int source, int tag, 
MPI_Comm comm, MPI_Request *request);

● None of the arguments passed to MPI_IRECV should be 
read or written until the receive operation is completed.



74

Completion: Waiting and TestingCompletion: Waiting and Testing

● Posted sends and receives must be completed.
● If a send or receive is posted by a nonblocking routine, then 

its completion status can be checked by calling one of a 
family of completion routines.

● MPI provides both blocking and nonblocking completion 
routines.
● The blocking routines are MPI_WAIT and its variants.
● The nonblocking routines are MPI_TEST and its variants.
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Completion: WaitingCompletion: Waiting

● A process that has posted a send or receive by calling a 
nonblocking routine can subsequently wait for the posted 
operation to complete by calling MPI_WAIT.

● The posted send or receive is identified by passing a 
request handle.

● The arguments for the MPI_WAIT routine are:
● request - a request handle (returned when the send or receive 

was posted
● status - for receive, information on the message received; for 

send, may contain an error code
● In addition, an error code is returned.
int MPI_Wait( MPI_Request *request, MPI_Status 
*status );
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Completion: WaitingCompletion: Waiting

● If the posted operation was a receive, then the source, tag, 
and actual count of data received are available via the 
status argument.

● If the posted operation was a send, the status argument 
may contain an error code for the send operation (different 
from the error code for the call to MPI_WAIT).
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Completion: TestingCompletion: Testing

● A process that has posted a send or receive by calling a 
nonblocking routine can subsequently test for the posted 
operation’s completion by calling MPI_TEST.

● The posted send or receive is identified by passing a 
request handle.

● The arguments for the MPI_TEST routine are:
● request - a request handle (returned when the send or receive 

was posted)
● flag - "true" if the send or receive has completed
● status - undefined if flag equals "false". Otherwise, like 

MPI_WAIT
int MPI_Test( MPI_Request *request, int *flag, 
MPI_Status *status );
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Completion: TestingCompletion: Testing

● The request argument is expected to identify a previously 
posted send or receive.

● MPI_TEST returns immediately.
● If the flag argument is "true," then the posted operation is 

complete.
● If the flag argument is "true" and the posted operation was a 

receive, then the source, tag, and actual count of data 
received are available via the status argument.

● If the flag argument is "true" and the posted operation was a 
send, then the status argument may contain an error code 
for the send operation (not for MPI_TEST).
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Advantages and DisadvantagesAdvantages and Disadvantages

● Selective use of nonblocking routines makes it much easier 
to write deadlock-free code. This is a big advantage 
because it is easy to unintentionally write deadlock into 
programs.

● On systems where latencies are large, posting receives 
early is often an effective, simple strategy for masking 
communication overhead.
● Latencies tend to be large on physically distributed collections 

of hosts (for example, clusters of workstations) and relatively 
small on shared memory multiprocessors.

● Masking communication overhead requires careful attention to 
algorithms and code structure.

● On the downside, using nonblocking send and receive 
routines may increase code complexity, which can make 
code harder to debug and harder to maintain.
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Code Structure for Latency HidingCode Structure for Latency Hiding

MPI_IRECV(...,request)

...

arrived=FALSE

while (arrived == FALSE) {

   "work planned for processor to do while waiting for message data"

   MPI_TEST(request,arrived,status)

}

   "work planned for processor to do with the message data"
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Non-blocking Send/Receive ExampleNon-blocking Send/Receive Example

/* deadlock avoided */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {
  int myrank;
  MPI_Request request;
  MPI_Status status;
  double a[100], b[100];

  MPI_Init(&argc, &argv);  /* Initialize MPI */
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
  if( myrank == 0 ) {
    /* Post a receive, send a message, then wait */
    MPI_Irecv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &request );
    MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
    MPI_Wait( &request, &status );
  }
  else if( myrank == 1 ) {
    /* Post a receive, send a message, then wait */
    MPI_Irecv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &request );...
    MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
    MPI_Wait( &request, &status );
  }

  MPI_Finalize();          /* Terminate MPI */
  return 0;
}
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Send and Receive ModesSend and Receive Modes

● In MPI, there are four send modes but only one receive 
mode. The four send modes are:
● Standard Mode Send
● Synchronous Mode Send
● Ready Mode Send
● Buffered Mode Send

● A receiving process can use the same call to MPI_RECV or 
MPI_IRECV, regardless of the send mode used to send the 
message.

● The standard mode send is the most widely used.
● Both blocking and nonblocking calls are available for each 

of the four send modes. 



83

Naming Conventions and Calling Sequences Naming Conventions and Calling Sequences 

● The blocking send functions take the same arguments (in 
the same order) as MPI_SEND. The nonblocking send 
functions take the same arguments (in the same order) as 
MPI_ISEND.

Send Mode Blocking Function Nonblocking Function

Standard MPI_SEND MPI_ISEND

Synchronous MPI_SSEND MPI_ISSEND

Ready MPI_RSEND MPI_IRSEND

Buffered MPI_BSEND MPI_IBSEND
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Standard Mode SendStandard Mode Send
● When MPI executes a standard mode send, one of two 

things happens.
● The message is copied into an MPI internal buffer and is 

transferred asynchronously to the destination process
● The source and destination processes synchronize on the 

message.
● The MPI implementation is free to choose (on a case-by-

case basis) between buffering and synchronizing, 
depending on message size, resource availability, and so 
on.
● If the message is copied into an MPI internal buffer, then the 

send operation is formally completed as soon as the copy is 
done.

● If the two processes synchronize, then the send operation is 
formally completed only when the receiving process has posted 
a matching receive and actually begun to receive the message.
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Synchronous Mode SendSynchronous Mode Send

● Synchronous mode send requires MPI to synchronize the 
sending and receiving processes.

● When a synchronous mode send operation is completed, 
the sending process may assume the destination process 
has begun receiving the message.
● The destination process need not be done receiving the 

message.
● The nonblocking call has the same advantages the 

nonblocking standard mode send has: the sending process 
can avoid blocking on a potentially lengthy operation.
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Ready Mode SendReady Mode Send

● Ready mode send requires that a matching receive has 
already been posted at the destination process before ready 
mode send is called.
● If a matching receive has not been posted at the destination, 

the result is undefined.
● It is your responsibility to make sure the requirement is met.

● In some cases, knowledge of the state of the destination 
process is available without doing extra work.
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Buffered Mode SendBuffered Mode Send

● Buffered mode send requires MPI to use buffering. The 
downside is that you must assume responsibility for 
managing the buffer.

● If at any point, insufficient buffer is available to complete a 
call, the results are undefined.

● The functions MPI_BUFFER_ATTACH and 
MPI_BUFFER_DETACH allow a program to make buffer 
available to MPI.
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Game of LifeGame of Life

● In order to truly run the "Game of Life" program in parallel, 
we must set up our domain decomposition, i.e., divide the 
domain into chunks and send one chunk to each processor.

● In the current exercise, we will limit ourselves to two 
processors.
● If you are writing your code in C, divide the domain with a 

horizontal line, so the upper half will be processed on one 
processor and the lower half on a different processor.

● If you are using Fortran, divide the domain with a vertical line, 
so the left half goes to one processor and the right half to 
another.
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Domain DecompositionDomain Decomposition
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Ghost CellsGhost Cells

● One issue that you need to consider is that of internal 
domain boundaries. 

● Each cell needs information from all adjacent cells to 
determine its new state.

● With domain decomposition, some of the required cells no 
longer are available on the local processor.

● A common way to tackle this problem is through the use of 
ghost cells.

● In the current example, a column of ghost cells is added to 
the right side of the left domain, and a column is also added 
to the left side of the right domain.

● After each time step, the ghost cells are filled by passing the 
appropriate data from the other processor.
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Ghost CellsGhost Cells


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

