
1

Linked ListLinked List

● So far, you know two types of data structures, which are collections of
data
● arrays
● stacks

● Linked lists are another collection type.
● Arrays, stacks and linked lists store "elements" on behalf of "client"

code.
● The specific type of element is not important since essentially the

same structure works to store elements of any type.
● Arrays / stacks of integers
● Arrays / stacks of doubles
● Arrays / stacks of customer accounts
● Arrays / stacks of ...

2

LInked List StructureLInked List Structure
● An array allocates memory for all its elements lumped together as one

block of memory.
● A linked list allocates space for each element separately in its own

block of memory called a "linked list element" or "node". All nodes of a
list are connected together like the links in a chain.

● Each node contains two fields: a "data" field to store whatever element
type the list holds for its client, and a "next" field which is a pointer
used to link one node to the next node.

● Each node is allocated in the heap with a call to malloc(), so the
node memory continues to exist until it is explicitly deallocated with a
call to free(). The front of the list is a pointer to the first node.

data = 1
next = 0xc124

data = 2
next = 0xc038

data = 3
next = NULL

head = 0xc224

3

Create ListCreate List
● The example below will create the three-element list
struct node
{
 int data;
 struct node *next;
};

/* Build the list {1, 2, 3} in the heap and store
 its head pointer in a local stack variable.
 Returns the head pointer to the caller. */
struct node * BuildOneTwoThree ()
{
 struct node *head = NULL;
 struct node *second = NULL;
 struct node *third = NULL;
 head = malloc (sizeof (struct node)); /* allocate 3 nodes in the heap */
 second = malloc (sizeof (struct node));
 third = malloc (sizeof (struct node));
 head->data = 1; /* setup first node */
 head->next = second;
 second->data = 2; /* setup second node */
 second->next = third;
 third->data = 3; /* setup third link */
 third->next = NULL;
/* At this point, the linked list referenced by "head"
 matches the list in the drawing. */
 return head;
}

data = 1
next = 0xc124

data = 2
next = 0xc038

data = 3
next = NULL

head = 0xc224

4

Count Elements in the ListCount Elements in the List

● Pass the list by passing the head pointer
● Iterate over the list with a local pointer

/* Given a linked list head pointer, compute and return the number of nodes in the list. */
int Length (struct node *head){ struct node *current = head; int count = 0; while (current != NULL) { count++; current = current->next; } return count;}
void LengthTest (){ struct node *myList = BuildOneTwoThree (); int len = Length (myList); /* results in len == 3 */}

data = 1
next = 0xc124

data = 2
next = 0xc038

data = 3
next = NULL

head = 0xc224

5

Display Elements in the ListDisplay Elements in the List

● Iterate over the list with the local pointer
● Print the data contained in each node

/* Given a linked list head pointer, display
 all numbers stored in the list. */
void Display (struct node *head)
{
 struct node *current = head;
 while (current != NULL)
 {
 printf("%d ",current->data);
 current = current->next;
 }
 printf("\n");
}

data = 1
next = 0xc124

data = 2
next = 0xc038

data = 3
next = NULL

head = 0xc224

6

Add Element in Front of the ListAdd Element in Front of the List

● Pass the pointer to the head to be able to modify it

void Push (struct node **headPtr, int data)
{
 struct node *newNode = malloc (sizeof (struct node));
 newNode->data = data;
 newNode->next = *headPtr;
 *headPtr = newNode;
}
void PushTest ()
{
 struct node *head = BuildOneTwoThree ();
 Push (&head, 0); /* note the & */
 Push (&head, 13);
 /* head is now the list {13, 0, 1, 2, 3} */
}

data = 1
next = 0xc124

data = 2
next = 0xc038

data = 3
next = NULL

*headPtr = 0xc224

data = ?
next = ?

newNode = 0xc246

7

Add Element in Front of the ListAdd Element in Front of the List

● Pass the pointer to the head to be able to modify it

void Push (struct node **headPtr, int data)
{
 struct node *newNode = malloc (sizeof (struct node));
 newNode->data = data;
 newNode->next = *headPtr;
 *headPtr = newNode;
}
void PushTest ()
{
 struct node *head = BuildOneTwoThree ();
 Push (&head, 0); /* note the & */
 Push (&head, 13);
 /* head is now the list {13, 0, 1, 2, 3} */
}

data = 1
next = 0xc124

data = 2
next = 0xc038

data = 3
next = NULL

*headPtr = 0xc224

data = 0
next = 0xc224

newNode = 0xc246

8

Add Element in Front of the ListAdd Element in Front of the List

● Pass the pointer to the head to be able to modify it

void Push (struct node **headPtr, int data)
{
 struct node *newNode = malloc (sizeof (struct node));
 newNode->data = data;
 newNode->next = *headPtr;
 *headPtr = newNode;
}
void PushTest ()
{
 struct node *head = BuildOneTwoThree ();
 Push (&head, 0); /* note the & */
 Push (&head, 13);
 /* head is now the list {13, 0, 1, 2, 3} */
}

data = 1
next = 0xc124

data = 2
next = 0xc038

data = 3
next = NULL

*headPtr = 0xc246

data = 0
next = 0xc224

newNode = 0xc246

9

Free ListFree List

● Free each node starting from the beginning

void FreeList (struct node *head)
{
 while (head)
 {
 struct node *t = head->next;
 free (head);
 head = t;
 };
}

data = 1
next = 0xc124

data = 2
next = 0xc038

data = 3
next = NULL

head = 0xc224

t = 0xc124

10

Free ListFree List

● Free each node starting from the beginning

void FreeList (struct node *head)
{
 while (head)
 {
 struct node *t = head->next;
 free (head);
 head = t;
 };
}

data = 2
next = 0xc038

data = 3
next = NULL

head = 0xc224

t = 0xc124

11

Free ListFree List

● Free each node starting from the beginning

void FreeList (struct node *head)
{
 while (head)
 {
 struct node *t = head->next;
 free (head);
 head = t;
 };
}

data = 2
next = 0xc038

data = 3
next = NULL

head = 0xc124

t = 0xc124

12

Free ListFree List

● Free each node starting from the beginning

void FreeList (struct node *head)
{
 while (head)
 {
 struct node *t = head->next;
 free (head);
 head = t;
 };
}

data = 2
next = 0xc038

data = 3
next = NULL

head = 0xc124

t = 0xc038

13

Free ListFree List

● Free each node starting from the beginning

void FreeList (struct node *head)
{
 while (head)
 {
 struct node *t = head->next;
 free (head);
 head = t;
 };
}

data = 3
next = NULL

head = 0xc124

t = 0xc038

14

Free ListFree List

● Free each node starting from the beginning

void FreeList (struct node *head)
{
 while (head)
 {
 struct node *t = head->next;
 free (head);
 head = t;
 };
}

data = 3
next = NULL

head = 0xc038

t = 0xc038

15

Free ListFree List

● Free each node starting from the beginning

void FreeList (struct node *head)
{
 while (head)
 {
 struct node *t = head->next;
 free (head);
 head = t;
 };
}

data = 3
next = NULL

head = 0xc038

t = NULL

16

Free ListFree List

● Free each node starting from the beginning

void FreeList (struct node *head)
{
 while (head)
 {
 struct node *t = head->next;
 free (head);
 head = t;
 };
}

head = 0xc038

t = NULL

17

Free ListFree List

● Free each node starting from the beginning

void FreeList (struct node *head)
{
 while (head)
 {
 struct node *t = head->next;
 free (head);
 head = t;
 };
}

head = NULL

t = NULL

18

Incorrect Implementation of Free ListIncorrect Implementation of Free List

● Version below is shorter, but incorrect
● It attempts to access the freed memory area
● We cannot get rid of the temporary variable

void FreeList (struct node *head)
{
 while (head)
 {
 free (head);
 head=head->next;
 };
}

19

Append NodeAppend Node

● Function appends the node at the end of the list

void AppendNode (struct node **headRef, int num)
{
 struct node *current = *headRef;
 struct node *newNode;
 newNode = malloc (sizeof (struct node));
 newNode->data = num;
 newNode->next = NULL;
 /* special case for length 0 */
 if (current == NULL)
 {
 *headRef = newNode;
 }
 else
 {
 /* Locate the last node */
 while (current->next != NULL)
 {
 current = current->next;
 }
 current->next = newNode;
 }
}

20

Copy ListCopy List

● Function returns the pointer to the copy of the list
● Note there is no need for special case for an empty list

struct node * CopyList (struct node *src)
{
 struct node *head = NULL;
 struct node **dst=&head;
 while (src)
 {
 *dst = malloc (sizeof (struct node));
 (*dst)->data = src->data;
 (*dst)->next = NULL;
 src = src->next;
 dst = &((*dst)->next);
 }
 return head;
}

21

Homework ProblemsHomework Problems

● Write a Pop() function that is the inverse of Push().
Pop() takes a non-empty list, deletes the head node, and
returns the head node's data.

●

●

●

●

● Write an iterative Reverse() function that reverses a list in
place by rearranging all the .next pointers and the head
pointer.

●

●

●

void PopTest() {
 struct node* head = BuildOneTwoThree(); // build {1, 2, 3}
 int a = Pop(&head); /* deletes "1" node and returns 1 */
 int b = Pop(&head); /* deletes "2" node and returns 2 */
 int c = Pop(&head); /* deletes "3" node and returns 3 */
 int len = Length(head); /* the list is now empty, so len == 0 */
}

void ReverseTest() {
 struct node* head;
 head = BuildOneTwoThree();
 Reverse(&head);
 /* head now points to the list {3, 2, 1} */
 FreeList(head);
}

22

Homework ProblemsHomework Problems
● Write the Sort() functions that sorts the list in place in

ascending order. Use the bubblesort algorithm.

● Write a complete set of functions (including above
homework problems) for the list of zero-terminated strings.
List should store the copies of strings, so do not forget about
the proper memory management.

void SortTest() {
 struct node* head = NULL;
 int i;
 for(i=0;i<10;i++)
 Push(&head,i)
 /* head now points to the list {9, 8, ... , 1, 0} */
 Sort(&head);
 /* head now points to the list {0, 1, 2, ... , 9} */
 FreeList(head);
}

