
Fundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Leaves and the Cleanup Stack



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Introduction

Symbian OS was designed to perform well on devices with limited memory and 
uses the cleanup stack to ensure that memory is not leaked, even under error 
conditions.

Two of the most fundamental programming patterns of Symbian OS are leaves - a 
‘lightweight’ exception on Symbian OS - and the cleanup stack, which is used to 
manage memory and other resources in the event of a leave. 

2



Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Leaves and the Cleanup Stack

Leaves: Lightweight Exceptions for Symbian OS

‣ Know that, before v9, Symbian OS did not support standard C++ exceptions (try/catch/
throw) but used a lightweight alternative: TRAP and leave, which is still preferred in Symbian OS 
v9

‣ Know that leaves are a fundamental part of Symbian error handling and are used throughout the 
system

‣ Understand the similarity between leaves and the setjmp/longjmp declarations in C

‣ Recognize the typical system functions that may cause a leave, including the User::LeaveXXX() 
functions and new(ELeave)

‣ Be able to list typical circumstances which cause a leave (for example, insufficient memory for a 
heap allocation)

‣ Understand that new(ELeave) guarantees that the pointer return value will always be valid if a 
leave has not occurred

3



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Why Not Standard C++ Exceptions?

Symbian OS was first designed at a time when exceptions were part of the C++ standard

• Exception-handling support was found to add substantially to the size of compiled code and to run-time RAM 
overheads, regardless of whether or not exceptions were actually thrown

The emphasis on a compact operating system and client code

•  Meant that exceptions presented too much overhead on Symbian OS 

• So a simple, lightweight alternative to standard C++ exceptions was provided - leaves

• A leave is used to propagate an error to where it can be handled 

4



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Why Not Standard C++ Exceptions?

Symbian OS v9.x 

• On Symbian OS versions before v9.x, compilers are explicitly directed to disable C++ exception handling

• Symbian OS v9.x, by taking advantage of compiler improvements, supports C++ standard exceptions and 
provides a more open environment 

• This makes it easier to port existing C++ code onto the Symbian platform

5



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

What is a Leave?

A leave suspends code execution 

• At the point the leave occurs and resumes execution where the leave is trapped

• The trap harness in Symbian OS is a TRAP macro

• The leave sets the stack pointer to the context of the TRAP and jumps to that location - restoring 

the register values 

• A leave does not terminate the flow of execution of the thread

User::Leave() or User::LeaveIfError()

• Are similar to a C++ throw instruction

•  Except for its destruction of stack-based variables (as discussed shortly) 

TRAP macros 

• May be seen as combination of try and catch - they are discussed in more detail later

6



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

void SomeLeavingFunctionL (...)

{

...

User::Leave(KErrNotFound);
... 
}

setjmp() and longjmp() Methods

TRAP macros and User::Leave() are analogous to the standard library setjmp() 

and longjmp() methods

• A call to setjmp() stores information about the location to be “jumped to” in a jump buffer ...

• ... used by longjmp()to determine the location to which the point of execution “jumps”

7

void SomeFunction()

{

// do something ...

TInt result;
TRAP(result,SomeLeavingFunctionL(...));

}

2. normal C++ call 
of function 

3. longjmp occurs 
drops back to the TRAP 

1. setjmp i.e. stack position stored

4. Execution resumes, result = KErrNotFound



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Leave Behavior  

The leave mechanism simply deallocates objects on the stack

• Unlike a C++ exception, it does not call any destructors on stack objects

• If a stack object owns a resource which must be deallocated or otherwise “released” as part of destruction it will 
leak that resource in the event of a leave 

This is why only T classes, and built-in types may be instantiated and used safely on the stack 

• T classes are restricted to ownership of built-in types or other T classes and do not own resources and thus do 
not need a destructor 

• A stack-based T-class object will thus be cleaned up correctly if a leave occurs because, in effect, there is nothing to 
clean up as the stack unwinds

R classes may also be created on the stack - but they must be made “leave safe” 

• The cleanup stack is used for this, as shall be discussed shortly

8



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

What Causes a Leave?

A typical leaving function 

• Is one that performs an operation that is not guaranteed to succeed for example:

• Allocation of memory - which may fail under low memory conditions

• Creation of a file - which may fail if there is insufficient disk space

Leaves can also happen if:

• Another leaving function is called, and it leaves

• A system function call explicitly causes a leave (e.g. User::Leave()) 

• Code uses the overloaded form of operator new which takes ELeave as a parameter

9



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Why Use Leaves?
Given exceptions presented to much overhead to be used why not simply check 
everything? For example:

10

CCat* InitializeCat()

    {

    CCat* cat = new CCat();

    if (cat)
      {
      cat->Initialize();
      return (cat);
      }
    else
      return (NULL);

• Too much reliance on the developer - it’s easy to forget a check

• Even with low-memory testing unchecked code can make it into the wild

• Can create unnecessarily complex code  



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Heap Allocation using new(ELeave)

Symbian OS overloads the global operator new to leave 

• To provide an option to leave if there is insufficient heap memory for a successful allocation

• Use of this overload allows the pointer returned from the allocation to be used without a further test that 
the allocation was successful (the allocation would leave if it were not)

• Removes the need for the developer to write an additional check

• Here is a code fragment which illustrates the use of the Symbian OS operator new overload:

11

CCat* InitializeCatL() 

    {

    CCat* cat = new(ELeave) CCat();
    cat->Initialize();

    return (cat);

    }



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Functions in Class User that cause a Leave

User::LeaveIfError() 

• Tests an integer parameter passed into it and causes a leave if the value is less than zero

• Uses the integer value as a leave code, for example, one of the KErrXXX error constants 

defined in e32std.h 

• User::LeaveIfError() is useful for turning a non-leaving function which returns a 

standard Symbian OS error into one which leaves with that value

e.g. User::LeaveIfError(FunctionReturningAnError());

User::Leave() 

• Does not carry out any value checking but simply leaves with the integer value passed into it 
as a leave code

12



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Functions in Class User that cause a Leave

User::LeaveNoMemory() 

• Takes no arguments.

• The leave code is hardcoded to be KErrNoMemory which makes it, in effect, the same as 

calling User::Leave(KErrNoMemory)

User::LeaveIfNull() 

• Takes a pointer value and leaves with KErrNoMemory if it is NULL 

• It can sometimes be useful to enclose a call to a non-leaving function which allocates memory 
and returns a pointer to that memory or NULL if it is unsuccessful

13



Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Leaves and the Cleanup Stack

How to Work with Leaves

‣ Know that leaves are indicated by use of a trailing L suffix on functions containing code 
that may leave (for example, InitializeL())

‣ Be able to spot functions that are not leave-safe, and those that are

‣ Understand that leaves are used for error handling; code should very rarely return an 
error and be able to leave

‣ Understand the reason why a leave should not occur in a constructor or destructor

14



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

How to Work with Leaves

The problem of unsafe leaves

• Assume that a function has previously allocated memory on the heap and this memory is 
referenced only by a local pointer variable

• If a leave occurs inside the function, the pointer is destroyed by the leave (as the stack frame is 

unwound back to the TRAP handler) and the heap memory the pointer references becomes 
unrecoverable, causing a memory leak

15



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

A Memory Leak Anti-Pattern

16

An example of an unsafe leave ...

void UnsafeFunctionL()

{

CTestClass* test = CTestClass::NewL(); 

test->FunctionMayLeaveL();

delete test;

}

void SomeFunction()

{

// do something ...

TInt result;
TRAP (result,UnsafeFunctionL());

}

2. normal C++ 
call of function 

1. setjmp i.e. stack position stored

5. Execution resumes at the TRAP but heap memory 
pointed to by test is not accessible. In this example 

at point (3) CTestClass is allocated memory but 
leaves at (4) and delete is never called on test 
i.e. so it is “orphaned” 3. Memory allocated on heap

4. Leave occurs (longjmp)

*** Never deleted ***



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Introducing the Cleanup Stack

To make a function leave-safe

• Heap objects referenced only by local variables must be pushed onto the cleanup stack 
before calling any functions which may leave

• The cleanup stack will delete the heap memory should a leave occur

• The cleanup stack is discussed in more detail later

17



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Where the Cleanup Stack is Used

18

Don’t worry about the exact details - these will be covered later

void UnsafeFunctionL()

{

CTestClass* test = CTestClass::NewL(); 

CleanupStack::PushL(test);

test->FunctionMayLeaveL();

CleanupStack::Pop(test); 
delete test;

}

void SomeFunction()

{

// do something ...

TInt result;

TRAP (result,UnsafeFunctionL());

}

2. Normal C++ call of function 

1. setjmp i.e. stack position stored

6. The TRAP macro detects something has been 
pushed onto the cleanup stack and destroys it 
as part of leave processing. Execution continues.

3. Memory allocated on heap

5. Leave occurs (longjmp)

4. test (address of the memory allocated)
is placed on the cleanup stack

If no leave occurs it is important 
to pop the item off the stack and 
destroy it normally.



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

More Symbian OS Naming Conventions

19

How is it possible to know whether a function may leave? 

• Symbian OS has a naming convention in place to indicate this 

• If a function may leave, its name must end with a trailing "L" to identify as much

• This is important: If a leaving function is not named to indicate its potential to leave, callers of 
that function may not defend themselves against a leave and may accidentally leak memory

• Symbian OS provides a tool, LeaveScan, that checks code for incorrectly named leaving 

functions



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

More Symbian OS Conventions!

Generally 

• Leaving functions should return void 

• Unless they use the return value for a pointer or reference to a resource allocated by the function

• Since leaving functions by definition leave with an error code - a “leave code” - they do not also need to 
return error values

Any error that occurs 

• In a leaving function should be passed out as a leave 

• If the function does not leave it is deemed to have succeeded and will return normally

20



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Examples of Typical Leaves
Four possible leaves:

21

TInt UseCat(CCat* aCat); // Forward declaration

CCat* InitializeCatL()

    {
    CCat* cat = new(ELeave) CCat();  // (1) 
    CleanupStack::PushL(cat);        // (2)
    cat->InitializeL();              // (3) 
    User::LeaveIfError(UseCat(cat)); // (4)
    CleanupStack::Pop(cat);
    return (cat);

    }

1. Using overloaded operator new to allocate memory

2. Pushing something up to the cleanup stack (see later)
3. Calling a leaving method
4. Calling a non-leaving method that may return an error code surrounded with a system function 

to cause a leave



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

When a Leave should not Occur: 
constructors & destructors

If a leave occurs in a constructor

• It places the object in an indeterminate state

• If a constructor can fail, through lack of the resources necessary to create or initialize the object, it is 
possible that memory would be leaked. 

• The two-phase construction paradigm must be used to prevent this (discussed next lecture)

A leave should never occur in a destructor or in cleanup code

• A leave part-way through a destructor will leave the object destruction incomplete - which may leak its 
resources

• A destructor could itself be called as part of cleanup following a leave and a further leave at this point would 
be undesirable... 

...if nothing else because it would mask the initial reason for the leave

22



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Member Variables are Leave-Safe

Heap variables 

• Referenced only by local variables may be orphaned if a leave occurs 

Member variables 

• Will not suffer a similar fate - unless their destructor neglects to destroy them when it is called at 
some later point

23

void CTestClass::SafeFunctionL()

    {

    iMember = CCatClass::NewL(); // Allocates a heap member
    FunctionMayLeaveL();         // Safe for iMember

    }



Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Leaves and the Cleanup Stack

Comparing Leaves and Panics

‣ Understand the difference between a leave and a panic

‣ Recognize that panics come about through assertion failures, which should be used to flag 
programming errors during development

‣ Recognize that a leave should not be used to direct normal code logic

24



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Comparing Leaves and Panics

Leaves are for graceful handling of problems

• Leaves occur under exceptional conditions such as out-of-memory or out-of-disk-space and are 
used in place of returning an error 

• Leaves should only be used to propagate an error or exception to a point in the code which can 

handle it gracefully 

• They should not be used to direct the normal flow of program logic 

• Leaves should always be caught and handled — they do not terminate the flow of execution

25



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Comparing Leaves and Panics

26

Panics - a ‘stop everything’ mechanism for programming errors 

• Panics cannot be caught and handled

• A panic terminates the thread in which it occurs - usually the entire application

Panics should only be used

• In assertion statements to check code logic and fix programming errors during development (bad 
user experience)

• If a panic occurs from system or application code during development, it’s necessary to find the cause 
and fix it

Symbian OS panics 

• Are documented in the Symbian Developer Library

• Panics and assertions are covered in more depth in a later lecture



Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Leaves and the Cleanup Stack

What Is a TRAP?

‣ Recognize the characteristics of a TRAP handler

‣ Understand that, for efficiency, use of TRAP s should be kept to a minimum

‣ Understand the meaning of the Symbian OS function suffixes C and D

27



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

What is a TRAP ?
Symbian OS provides two trap harness macros TRAP and TRAPD:

• Both are used to trap leaves and allow them to be handled

TRAPD declares the variable in which the leave code is returned

TRAP must declare a TInt variable itself first

28

TRAPD(result, MayLeaveL());
if (KErrNone!=result) 

   ...

is equivalent to:
TInt result;
TRAP(result, MayLeaveL());
if (KErrNone!=result)

    ...

• If a leave occurs inside the MayLeaveL() function, which is executed inside the harness, the 

program control will return immediately to the TRAP harness macro

• The variable result will contain the error code associated with the leave or will be KErrNone if no 

leave occurred



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Traps Incur Overheads

Each TRAP 

• Has an impact on executable size and execution speed

• The entry to and exit from a TRAP macro results in kernel executive calls TTrap::Trap() and 
TTrap::UnTrap()

• Kernel calls switch the user-side code into processor-privileged mode in order to access kernel resources 

• Kernel calls are quite expensive in terms of execution speed. 

• In addition, a structure is allocated at run-time to hold the current contents of the thread’s stack in order to 
return to that state should a leave occur

These factors 

• Combined with the inline code generated by the TRAP macro, add up to a fairly significant overhead.

• The number of TRAPs should be minimized where possible

• Use intelligently, code review with peers, and refactor where necessary 

29



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

A Note about the D Suffix Naming Convention

In UI programming 

• The D suffix means something completely different!

• A function whose name ends in D will take responsibility for destroying the object on which it 
is called 

• Since the function will delete the object when it is finished with it, any calling code should 

not attempt to do so

• A good example of such a function is CEikDialog::ExecuteLD()

30



Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Leaves and the Cleanup Stack

The Cleanup Stack

‣ Know how to use the cleanup stack to make code leave-safe, so memory is not leaked in the event of a 
leave

‣ Understand that CleanupStack::PushL() will not leak memory even if it leaves

‣ Know the order in which to remove items from the cleanup stack, and how to use 
CleanupStack::PopAndDestroy() and CleanupStack::Pop()

‣ Recognize correct and incorrect use of the cleanup stack

‣ Understand the consequences of putting a C class on the cleanup stack if it does not derive from CBase

‣ Know how to use CleanupStack::PushL() and CleanupXXXPushL() for objects of C, R, M 
and T classes and CleanupArrayDeletePushL() for C++ arrays

‣ Understand the meaning of the Symbian OS function suffixes C and D

31



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TRAPS, leaves and the cleanup stack

To Recap

• A memory leak can occur as a result of a leave when there are heap objects accessible only through 
pointers local to the function that leaves

• Pointers to objects that are not otherwise leave-safe should be placed on the cleanup stack before 

calling code that may leave. 

This ensures 

• the objects pointed to are destroyed correctly if a leave occurs as part of the TRAP the cleanup 

stack manages the deallocation of all objects which have been placed upon it

32



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Recap:  The Cleanup Stack in Use

33

void UnsafeFunctionL()

{

CTestClass* test = CTestClass::NewL(); 

CleanupStack::PushL(test);

test->FunctionMayLeaveL();

CleanupStack::Pop(test); 
delete test;

}

void SomeFunction()

{

// do something ...

TInt result;

TRAP (result,UnsafeFunctionL());

}

2. Normal C++ call of function 

1. setjmp i.e. stack position stored

6. The TRAP macro detects something has been 
pushed onto the cleanup stack and destroys it as 
part of leave processing. Execution continues.

3. Memory allocated on heap

5. Leave occurs (longjmp)

4. test (address of the memory allocated)
is placed on the cleanup stack

If no leave occurs it is important to 
pop the item off the stack and 
destroy it normally.



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The CleanupStack Class
All methods are static

• Defined in e32base.h

34

class CleanupStack

    {

public:

    IMPORT_C static void PushL(TAny* aPtr);

    IMPORT_C static void PushL(CBase* aPtr);

    IMPORT_C static void PushL(TCleanupItem anItem);

    IMPORT_C static void Pop();

    IMPORT_C static void Pop(TInt aCount);

    IMPORT_C static void PopAndDestroy();

    IMPORT_C static void PopAndDestroy(TInt aCount);

    IMPORT_C static void Check(TAny* aExpectedItem);

    inline static void Pop(TAny* aExpectedItem);

    inline static void Pop(TInt aCount,TAny* aLastExpectedItem);

    inline static void PopAndDestroy(TAny* aExpectedItem);

    inline static void PopAndDestroy(TInt aCount,TAny* aLastExpectedItem);

    };



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The CleanupStack Class

It is a stack - Last In First Off (“LIFO”)

• Pointers are pushed onto and popped off the cleanup stack in strict order 

• A series of Pop() calls must occur in the reverse order of the PushL() calls (LIFO)

Pop() and PopAndDestroy()

• Pops the last item off the stack

• Pops the last item off the stack and deletes it

Pop(TInt aCount)and PopAndDestroy(TInt aCount)

• Pops the last aCount number of items off

• Pops and deletes the last aCount number of items

35



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The CleanupStack Class

Pop(TAny* aExpectedItem)

Pop(TInt aCount, TAny* aLastExpectedItem)

PopAndDestroy(TAny* aExpectedItem)

PopAndDestroy(TInt aCount,TAny* aLastExpectedItem)

• As with the previous methods pops off a single item or a number of items

• The last item is named: aExpectedItem

• In debug builds, the cleanup stack will panic if the item being popped off is not the same as the one 
passed in

• It is good practice to use these methods

Check(TAny* aExpectedItem) 

• Checks the item on top of the stack is the expected item without popping it

• Panics if it is not  

• Used as a debugging tool 

36



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

PushL()

Why does CleanupStack::PushL() leave?

• It may need to allocate memory for pointer storage and thus may fail in low-memory situations 

• The object passed into the PushL() method will be safe 

• It will not be orphaned because when the cleanup stack is created it has at least one spare slot

• PushL() adds the pointer to the next vacant slot and then checks to see if there are slots free for 

next time PushL() is called

If there are no remaining slots available 

• The cleanup stack implementation attempts to allocate more slots for future usage 

• If this allocation fails only then does a leave occur

• The pointer passed in has already been stored safely thus the object it refers to will be safely cleaned 
up

37



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

PushL()

There are three overloads of the PushL() method used to place items onto the 

cleanup stack:

• Each overload determines how the item is later destroyed when it is cleaned up when a leave 

occurs or through a call to CleanupStack::PopAndDestroy()

38

IMPORT_C static void PushL(CBase* aPtr);

IMPORT_C static void PushL(TAny* aPtr);

IMPORT_C static void PushL(TCleanupItem anItem);



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

PushL() and PopAndDestroy() 

IMPORT_C static void PushL(CBase* aPtr)

• Takes a pointer to a CBase-derived object 

• It will be configured to be destroyed by invoking delete on the pointer

• The virtual destructor of the CBase-derived object is called

• This is the reason that the CBase class has a virtual destructor and must be used as a base class for 

all C classes.  It means that C-class objects can be placed on the cleanup stack and destroyed safely if 
a leave occurs

39



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

PushL() and PopAndDestroy() 

IMPORT_C static void PushL(TAny* aPtr)

• Used whenever any heap-based object that does not derive from CBase is pushed onto the cleanup 

stack

• T-class objects and structs that have been allocated on the heap

• The object’s heap memory is deallocated by invoking User::Free()

• delete is not called - so no destructor is called

• T classes do not have destructors, as previously discussed

40



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

PushL() and PopAndDestroy() 

IMPORT_C static void PushL(TCleanupItem anItem)

• Used to allow objects with types of cleanup processing other than CBase deletion or simple 

deallocation to be made leave-safe 

Such as R or M classes, or classes with customized cleanup routines 

• A TCleanupItem object encapsulates a pointer to the object and a pointer to a function 

that provides cleanup for that object 

• The cleanup function can be a local function or a static method of a class 

• A leave or a call to PopAndDestroy() removes the object from the cleanup stack and calls 

the cleanup function provided by the TCleanupItem

• Symbian OS also provides a set of template utility functions to generate an object of type 
TCleanupItem and pushes it onto the cleanup stack

41



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CleanupXXXPushL()Template Functions

CleanupReleasePushL()

• The cleanup method calls Release() on the object 

• Typically used to make leave-safe an object referenced through an M-class (mixin) pointer

CleanupDeletePushL()  

• Calls delete on the pointer passed into the function. 

• Typically used for M-class objects, which should not be pushed onto the cleanup stack 

using the CleanupStack::PushL(TAny*) overload

Objects referred to by M-class pointer usually cannot simply be deallocated by a call to User::Free()

42



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CleanupXXXPushL()Template Functions

CleanupClosePushL() 

• The cleanup method calls Close() on the object in question 

• Typically used to make stack-based R-class objects leave-safe

43

    RFs theFs;
    User::LeaveIfError(theFs.Connect());
    CleanupClosePushL(theFs);
    ... // Call functions which may leave

    CleanupStack::PopAndDestroy(&theFs);



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CleanupXXXPushL()Template Functions

44

CleanupArrayDeletePushL() 

• Used to push a pointer to a heap-based C++ array of T-class objects (or built-in types) on to the 
cleanup stack

• When PopAndDestroy() is called, the memory allocated for the array is cleaned up using 

delete[] 

• No destructor is called on the elements of the array



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

When to Remove an Item from the Cleanup Stack

Ownership Transfer

• It should never be possible for an object to be cleaned up more than once 

• If a pointer to an object on the cleanup stack is later stored elsewhere, say as a member variable of 
another object which is accessible after a leave, the pointer should then be popped from the cleanup 

stack. 

45

void TransferOwnershipExampleL

    {

    CItem* ptr = new(ELeave) CItem();

    

    CleanupStack::PushL(ptr);     

  

    

    iItemPtrArray->AppendL(ptr);    

    

    

    CleanupStack::Pop(ptr);     

    }

1. The stack variable ptr points to a chuck of memory allocated on the heap

2. The next function may leave so placing the pointer on the cleanup stack 
means the heap memory shall be freed if AppendL() leaves 

3. iItemPtrArray does not copy the CItem object but takes ownership of it by 
allocating a new slot to store the pointer i.e. the address of the CItem object. 
The allocation could fail hence it is a leaving function, which is ptr has been 
placed on the cleanup stack in advance

4. iItemPtrArray now owns the heap object pointed to by ptr so ptr may 
safely popped off the stack (but it should not be destroyed as iItemPtrArray 
owns it, and it would become invalid)



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Pointer Member Variables

Pointers which are class member variables 

• Should not be pushed onto the cleanup stack 

• The object may be accessed through the owning object which destroys it when appropriate

Typically in its destructor 

• So it does not need to be made leave-safe through use of the cleanup stack

• The next slide shows the consequences of this mistake in more detail...

46



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TRAPD(res,simple->MayLeaveFuncL());
...

   
void CSimple::MayLeaveFuncL()
     {

      iItem = new (ELeave) CItem();

      CleanupStack::PushL(iItem);
      

      
      PrivateMayLeaveL();
      CleanupStack::Pop(iItem);

      }

47

1. CSimple is created and pushed onto 
the clean up stack as the next function 
may leave

3. The member variable is pushed onto the 
clean up stack (oops!)

CSimple* simple = new (ELeave) CSimple();

CleanupStack::PushL(simple);

4. What happens if a leaves occurs? 

5 The TRAP does the right thing and clears 
the clean up stack i.e. CSimple::iItem is 
deleted 

6. The code logic completes with the 
popping and deleting of the simple 
object.

CleanupStack::PopAndDestroy(simple);

2. A leaving method is called on simple

class CSimple : CBase 

    {       

public:

        ~CSimple();

void MayLeaveFuncL();

private:

        PrivateMayLeaveL();

        CItem* iItem;

    };

CSimple::~CSimple
      {

      delete iItem;
      }

...

   

BUT this calls the CSimple destructor, which 
deletes the iItem which has already been deleted 
by the TRAP  

7. PANIC!

Coding Error Example



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

When to leave a Pointer on the Cleanup Stack

(More naming conventions)

• In a function, if a pointer to an object is pushed onto the cleanup stack and remains on it when 
that function returns, the Symbian OS naming convention is to append a C to the function 
name

• This indicates to the caller that, when the function returns successfully, the cleanup stack has 
additional pointers on it

48

/*static*/ CSiamese* CSiamese::NewLC(TPointColor aPointColour)
    {

    CSiamese* me = new(ELeave) CSiamese(aPointColour);

    CleanupStack::PushL(me); // Make this leave-safe...
    me->ConstructL();

    return (me); // me remains on the cleanup stack
    }

• This type of function is useful because the caller can instantiate CSiamese and immediately 
call a leaving function without needing to push the pointer onto the cleanup stack



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

When to leave a Pointer on the Cleanup Stack

Functions that leave objects 

• On the cleanup stack must not be called from immediately inside a TRAP harness

• If objects are pushed onto the cleanup stack inside a TRAP and a leave does not occur, 

• They must be popped off again before exiting the TRAP macro otherwise a panic occurs

This is because the cleanup stack stores objects in nested levels

• Each level is confined within a TRAP, and must be empty when the code inside it returns 

• The following code panics with E32USER-CBASE 71 when it returns to the TRAPD macro

49

CSiamese* MakeSiamese(TPointColor aPointColour)

    {// The next line will cause a panic (E32User-CBase 71)

    CSiamese* pCat = TRAPD(r, CSiamese::NewLC(aPointColour)); 
    return (pCat);

    }



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Creating the Cleanup Stack

The cleanup stack is created as follows: 

50

CTrapCleanup* theCleanupStack = CTrapCleanup::New();

... // Code that uses the cleanup stack within a TRAP macro

delete theCleanupStack;

• Once created, any leaving code which uses it must be called within a base-level TRAP harness 

• It is not necessary to create a cleanup stack for a GUI application, since the application 
framework creates one. 

• A cleanup stack must be created if:

• writing a server 

• a simple console-test application 

• any code which creates an additional thread that uses the cleanup stack (or calls code that does so)



Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Leaves and the Cleanup Stack

Detecting Memory Leaks

‣ Recognize the use of the __UHEAP_MARK and __UHEAP_MARKEND macros to detect 
memory leaks

51



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Detecting Memory Leaks

Memory is a limited resource on Symbian OS

• It must be managed carefully to ensure it is not wasted by memory leaks

• Applications must gracefully handle any exceptional conditions arising when memory 
resources are exhausted 

• Symbian OS provides a set of debug-only macros that can be added directly to code to check 
that memory is not leaked

• There are a number of macros available, but the most commonly used are defined as follows:

52

#define __UHEAP_MARK User::__DbgMarkStart(RHeap::EUser)

#define __UHEAP_MARKEND User::__DbgMarkEnd(RHeap::EUser,0)



Leaves and the Cleanup StackFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Detecting Memory Leaks

The __UHEAP_MARK and __UHEAP_MARKEND macros 

• Verify that the default user heap is consistent

• The check is started by using __UHEAP_MARK 

• A subsequent call to __UHEAP_MARKEND performs the verification 

• Checks to see if any heap cells were allocated after the call to __UHEAP_MARK that have not been 

freed before the call to __UHEAP_MARKEND

A panic will occur 

• In debug builds to indicate that the heap is inconsistent 

• The panic raised is ALLOC nnnnnnnn 

• nnnnnnnn is a hexadecimal pointer to the first orphaned heap cell

• The heap-checking macros can be nested inside each other and used anywhere in code

• They are ignored by release builds of Symbian OS so they can be left in production code without any 
impact on the code size or speed

53



Copyright © 2001-2007 Symbian Software Ltd.

Curriculum Check ListFundamentals of Symbian OS

Leaves and the Cleanup Stack

✓ Leaves: Lightweight Exceptions for Symbian OS

✓ How to Work with Leaves

✓ Comparing Leaves and Panics	

✓ What Is a TRAP?

✓ The Cleanup Stack

✓ Detecting Memory Leaks

54


