

Hardware Design Using EDK

This material exempt per Department of Commerce license exception TSU

Objectives

After completing this module, you will be able to:

- Describe how to add hardware to an existing XPS project
- Discuss the function of Platform Generator (PlatGen)
- Utilize the integration between ISE[™] and Xilinx Platform Studio (XPS) to enhance the design flow
- Utilize the Xflow in XPS
- Describe the steps involved in creating a submodule with XPS and integrating the submodule into a bigger system with ISE

Outline

Adding System Components

- Generating the System netlists (PlatGen)
- Generating the Bitstream
 - Manually with ISE: Project Navigator Integration
 - Top Level
 - Submodule
 - Automatically from XPS: Xflow Integration

Embedded Design

Initial System created with Base System Builder targeting Spartan-3E Starter Kit

🗇 Xilinx Platform Studio - C:/XUP/Markets/Embed	ded/Workshops/courses/v92Emt	pedded/sp3ekit/test/HW_	design_EDK/
🧧 Eile Edit View Project Hardware Software Device Cor	figuration Debug Simulation Window	<u>H</u> elp	
I 🗅 🖻 🗟 I 🖧 🛛 🗖 🔯 🗖 I 🛤 🍽 🗶 🖻 🕼 (M 🛛 🖻 🗗 🔂 🔽 🐼 🗒 🕅	🇞 🛛 🕶 📥 🛐 🏫 🗄	inn 🎥 🗄 🕅
Project Information Area × P	L Bus Interfaces Ports	Addresses	
Project Applications IP Catalog	B Name Bu	is Connection IP Type	IP Version
		microblaze	7.00.a
Description 🔺		Imb_v10	1.00.a
🕣 Analog		Imb_v10	1.00.a
🕀 Bus and Bridge		plb_v46	1.00 a
🗄 Clock, Reset and Interrupt	🛶 🕞 🧼 alimb_cnitir	Imb_bram_if_cntlr	2.10.a
🗄 Communication High-Speed 💦 🖌 🧹	-o— ⊕- → ilmb_cntlr	Imb_bram_if_ontir	2.10.a
🕞 Communication Low-Speed	🕞 🧼 lmb_bram	bram_block	1.00.a
🕞 Debug 🔰 🧅 🧅	——— ⊕ <i>→ R\$232_DCE</i>	xps_uartlite	1.00.a
🕞 DMA and Timer 🛛 🖌 🦕	——— 🕞 🥌 debu <u>g_</u> module	mdm	1.00.a
🕞 General Purpose IO	proc_sys_reset_0	proc_sys_reset	2.00.a
⊞ Interprocessor Communication	clock_generator_0	clock_generator	1.00.a
🕞 Memory and Memory Controller			
🕞 PCI			
🕞 Peripheral Controller			
Processor			
🖻 Utility			

Embedded Design

Add GPIO Peripherals to connect to on-board DIP Switches and LEDs

Adding IP to Design

- To add hardware in a new, empty project or to an existing project, select **IP Catalog** tab in XPS
- Expand group(s) of IP in the left window
- 3
- Select an IP and drag it to the System Assembly View window or double-click on the selected IP to be included into the system MHS file

Embedded Design Progress

GPIO Peripherals Added to System

Making Bus Connections

MicroBlaze communicates with external peripheral devices using busses

- Select Bus Interfaces tab
- Expand Peripherals in System View
 - Click under Bus Connection column, and select a bus instance to which it needs to connect

Assigning Addresses

MicroBlaze communicates with external devices through registers or memories at specific address ranges

Hardware Design Progress

GPIO instances are now connected to PLB bus, with Base/High Addresses Assigned

Parameterize IP Instances

Set a GPIO to a 4-bit input to connect to the 4 DIP Switches on the Board

1 Double click the instance or right click on the instance and select **Configure IP** to list the configurable parameters

- Enter new values
 - Override defaults

*Take similar steps for the other GPIO

Connecting Ports

Select Ports filter

- Click on plus sign to see available ports
- - Click under the Net column and select appropriate signal
 - -If the port is external in the design then make it external

Verify the external pin entry in the External Ports section

Name	Net	Directi	on Bange
External Ports		2 1000	an indigo
microplaze Ω			
\oplus \bigcirc mm			
🗐 🔿 mb alb			
🗄 🗢 dimb cntir			
🗄 🤜 ilmb_cntlr			
🕀 🧼 Imb_bram			
→ R\$232_DCE			
i i i i i i i i i i i i i i i i i i i			
GPIO2_t_out	No Connection	🕶 O	[0:(C_GPI0_WIDTH-1)
GPI02_d_out	No Connection	💌 O	[0:(C_GPI0_WIDTH-1)
GPIO2_in	No Connection	*	[0:(C_GPI0_WIDTH-1)
GPI02_I0_T	No Connection	~ 0	[0:(C_GPI0_WIDTH-1)
GPI02_I0_0	No Connection	✓ 0	[0:(C_GPI0_WIDTH-1)
GPI02_I0_I	No Connection	×	[0:(C_GPI0_WIDTH-1)
GPI02_I0	No Connection	<u> </u>	[0:(C_GPIO_WIDTH-1)
GPIO_t_out	No Connection	<u> </u>	[0:(C_GPIO_WIDTH-1)
GPIO_d_out	No Connection	O	[0:(C_GPIO_WIDTH-1)
GPIO_IO_T	No Connection	✓ 0	[0:(C_GPIO_WIDTH-1)
GPI0_I0_0	No Connection	✓ 0	[0:(C_GPIO_WIDTH-1)
GPIO_IO_I	No Connection	× 1	[0:(C_GPIO_WIDTH-1)
GPIO_IO	No Connection	<u>v</u> 10	[0:(C_GPIO_WIDTH-1)
IP2INTC_Irpt	No Connection		
GPIU_in	xps_gpio_U_GPIU	J_in ⊻I	[U:[C_GPIU_WIDTH-1]
Bus Interfaces Ports	Addresses		
Name	Net	D	irection Range

sys_tst_s dcm_clk_s sys_clk_pin ¥ ~ foga 0 BS232 DCE 👽 0 A DEDDD ACE TV His

sys_rst_pin

Hardware Design Progress

External Port Connections for both GPIO instances have been established

Make Pin Assignments

Double-click the system.ucf under the Project tab

2

Enter the pin location constraints (refer to the board user manual)

	(2)	
Project Information Area 🛛 🗙	25	
Project Applications IP Catalog	26 #### Module LEDs_8Bit constraints	
Disking	<pre>27 Net fpga_0_LEDs_8Bit_GPIO_d_out_pin<0> LOC=F9 IOSTANDARD = LVCMOS33;</pre>	
	<pre>28 Net fpga_0_LEDs_8Bit_GPIO_d_out_pin<1> LOC=E9 IOSTANDARD = LVCMOS33;</pre>	
Project Files	29 Net fpga_0_LEDs_8Bit_GPIO_d_out_pin<2> LOC=D11 IOSTANDARD = LVCMOS33	;
MHS File: system.mh	30 Net fpga_0_LEDs_8Bit_GPIO_d_out_pin<3> LOC=C11 IOSTANDARD = LVCMOS33	;
MSS File: sustem mss	31 Net fpga O LEDs 8Bit GPIO d out pin<4> LOC=F11 IOSTANDARD = LVCMOS33	;
	32 Net fpga O LEDs 8Bit GPIO d out pin<5> LOC=E11 IOSTANDARD = LVCMOS33	;
iMPACT Command File: etc/do	33 Net fpga O LEDs 8Bit GPIO d out pin<6> LOC=E12 IOSTANDARD = LVCMOS33	;
 Implementation Options File: etc 	34 Net fpga O LEDs 8Bit GPIO d out pin<7> LOC=F12 IOSTANDARD = LVCMOS33	;
Bitgen Options File: etc/bitgen.	35	
Project Options	36 #### Pin location constraints for the DIP switches	
Device: xc3s500efg320-4	37 NET dip GPIO in pin<0> LOC=L13 IOSTANDARD = LVTTL PULLUP ; # Swite	h0
- Netlist: TopLevel	38 NET dip GPIO in pin<1> LOC=L14 IOSTANDARD = LVTTL PULLUP; # Switch	1
- Implementation: XPS (Xflow)	39 NET dip GPIO in pin<2> LOC=H18 IOSTANDARD = LVTTL PULLUP; # Switch	2
HDL: VHDL	40 Net dip_GPIO_in_pin<3> LOC=N17 IOSTANDARD = LVTTL PULLUP; # Switch	.3

Hardware Design Progress

The GPIO instances are connected to the external DIP switches and LEDs on the board

Outline

- Adding System Components
- Generating the System Netlists (PlatGen)
 - Generating the Bitstream
 - Manually in ISE: Project Navigator Integration
 - Top Level
 - Submodule
 - Automatically from XPS: Xflow Integration

Hardware Creation Flow

Hardware Design

- After defining the system hardware and connectivity, the next step is to create hardware netlists with the Platform Generator (PlatGen)
- PlatGen inputs the following files:
 - Microprocessor Hardware Specification (MHS) file
 - Microprocessor Peripheral Definitions (MPD) file
- PlatGen constructs the embedded processor system in the form of hardware netlists (HDL and implementation netlist files)

Hardware Design Files

MHS and MPD

Microprocessor Hardware Specification (MHS) File

	BEGIN opb_uartlite
	PARAMETER INSTANCE = RS232_Uart
	PARAMETER HW VER = 1.00.b
4	PARAMETER C_BAUDRATE = 115200
	PARAMETER C_DATA_BITS = 8
	PARAMETER C ODD PARITY = 0
	PARAMETER C_USE_PARITY = 0
	PARAMETER C CLK FREQ = 100000000
	PARAMETER C BASEADDR = 0x40600000
	PARAMETER C HIGHADDR = 0x4060ffff
	BUS INTERFACE SOPB = opb

MHS overrides MPD

Microprocessor Peripheral Definitions (MPD) File

Bus Interfaces BUS_INTERFACE BUS = SOPB, BUS_STD = OPB, BU ## Generics for VHDL or Parameters for Veri PARAMETER C_BASEADDR = 0xFFFFFFFF, DT = std PARAMETER C_HIGHADDR = 0x00000000, DT = std PARAMETER C_OPB_DWIDTH = 32, DT = integer PARAMETER C_OPB_AWIDTH = 32, DT = integer PARAMETER C_DATA_BITS = 8, DT = integer, RA PARAMETER C_CLK_FREO = 125 000_000, DT = in PARAMETER C_BAUDRATE = 9600, DT = integer,

MPD contains all of the defaults

PlatGen

PlatGen Generated Directories

project_directory

- hdl directory
- implementation directory
- synthesis directory

- HDL directory
 - system.[vhd|v] file (if top level)
 - system_stub.[vhd|v] file (if submodule)
 - peripheral_wrapper.[vhd|v] files
- Implementation directory
 - peripheral_wrapper.ngc files
 - system.ngc file
 - system.bmm file
- Synthesis directory
 - peripheral_wrapper.[prj|scr] files
 - system.[prj|scr] files

PlatGen Memory Generation

- Platform Generator generates the necessary banks of memory and the initialization files for the block RAM block (bram_block). The block RAM block is coupled with a block RAM controller
- Current block RAM controllers for MicroBlaze include the following:
 - PLB block RAM controller (xps_bram_if_cntlr)
 - OPB block RAM controller (opb_bram_if_cntlr)
 - LMB block RAM controller (Imb_bram_if_cntlr)

PlatGen Memory Sizes

• Memory sizes

Architecture	Memory Size (kBytes) 32-bit byte-write	Memory Size (kBytes) 64-bit byte-write
Spartan™-II	2, 4	4,
Spartan-IIE	2, 4, 8, 16	4, 8, 16, 32
Spartan-3	8, 16, 32, 64	16, 32, 64, 128
Spartan-3e	8, 16, 32, 64	16, 32, 64, 128
Virtex™	2, 4, 8, 16	4, 8, 16, 32
Virtex-E	2, 4, 8, 16	4, 8, 16, 32
Virtex-II	8, 16, 32, 64	16, 32, 64, 128
Virtex-II PRO	8, 16, 32, 64	16, 32, 64, 128
Virtex-4	2, 4, 8, 16, 32, 64, 128	4, 8, 16, 32, 64, 128, 256
Virtex-5	4, 8, 16, 32, 64, 128, 256	8, 16, 32, 64,128, 256, 512

- Memory must be built on 2ⁿ boundaries
 - Let I be the unsigned number formed by the starting address and S be the size of the memory. If I/S is the integer, then the memory is built on the 2ⁿ boundary
 - 1-KB (1024) memory at 0x4000 (16384) is at the 2ⁿ boundary (16384/1024 = 16); whereas, 1 KB (1024) at 0x4100 (16640) is not (16640/1024 = 16.25)

Block Memory Map

- A Block RAM Memory Map (BMM) file contains a syntactic description of how individual block RAMs constitute a contiguous logical data space
- PlatGen has the following policy for writing a BMM file:
 - If PORTA is connected and PORTB is not connected, the generated BMM will be from PORTA point of reference
 - If PORTA is not connected and PORTB is connected, the generated BMM will be from PORTB point of reference
 - If PORTA is connected and PORTB is connected, the generated BMM will be from PORTA point of reference

Outline

- Adding System Components
- Generate the System Netlists (PlatGen)
- Generate the Bitstream
 - Manually in ISE: Project Navigator Integration
 - Automatically with XPS: Xflow Integration

Hardware Implementation Flow

Outline

- Adding System Components
- Generate the System Netlists (PlatGen)
- Generate the Bitstream
 - Manually in ISE: Project Navigator Integration
 - Automatically with XPS: Xflow Integration

Manual ISE Flow

User generates bitstream in ISE

- The processor system (.xmp) can be added and connected in an ISE project
 - XPS can be invoked from ISE
- Benefits include
 - Add additional logic to the FPGA design
 - Synthesize the design by utilizing ISE[™]-supported synthesis tools
 - Control the FPGA implementation flow by using ISE
 - Timing and constraints entry
 - Implementation tool flow control
 - Point tool control
 - FPGA Editor tool
 - Constraints Editor tool
 - ChipScope™ Pro tool

Instantiate Processor System in ISE

- Two ways to use the XPS and ISE tools to process embedded systems:
 - Top-Down
 - Invoke ISE and create a top-level project
 - Then create a new embedded processor source to include in the top-level design. This automatically invokes XPS, where you develop your embedded sub-module
 - Bottom-Up
 - Invoke XPS and develop your embedded processor design as a sub-module
 - Later, invoke ISE and add the embedded sub-module as a source to include in your top-level ISE project.

Outline

- Adding System Components
- Generating the System Netlists (PlatGen)
- Generate the Bitstream
 - Manually in ISE: Project Navigator Integration
 - Automatically with XPS: Xflow Integration

Hardware Implementation Automated Approach

- Xflow Automatically implements hardware and generates the bitstream
 - Input files \rightarrow .ngc netlists, system.bmm file, system.vhd, .ucf
 - Output Files \rightarrow system.bit, system_bd.bmm
 - A X flow calls the ISE[™] Implementation tools using fast_runtime.opt file
 - NGDBuild, MAP, PAR, and TRACE are executed
 - Xflow then calls the BitGen program using bitgen.ut file
 - BitGen generates the bit file system.bit
 - BitGen also generates the back-annotated system_bd.bmm BMM file, which contains the physical location of the block RAMs

Automatic ISE Flow

XPS generates bitstream using Xflow

- Benefits:
 - Independent design of the processor system
 - One GUI for performing all design work
- Limitations:
 - No direct control of synthesis and implementation options
 - No point-tool support
 - The embedded system design must be the top level of the design

Xflow

Required XPS Directory Structure

project_directory

Code/TestApp directory [optional]

etc directory

pcores

- Code/TestApp directory ${\bullet}$
 - <application>.c
- data directory •
 - <system>.ucf
- etc directory •
 - bitgen.ut
 - download.cmd
 - fast_runtime.opt —
 - **BSDL** files ____
- pcores directory
 - User IP
 - Customized block RAM controllers

Controlling Xflow

- A file called fast_runtime is in the etc directory
- This is what it looks like:
 - # Options for Translator

Type "ngdbuild -h" for a detailed list of ngdbuild command line options Program ngdbuild

- -p <partname>; # Partname to use picked from xflow commandline
 -nt timestamp; # NGO File generation. Regenerate only when
 # source netlist is newer than existing NGO file (default)
 -bm <design>.bmm; # block RAM memory map file
 - # User design pick from xflow command line
- <design>.ngd; # Name of NGD file. Filebase same as design filebase

End Program ngdbuild

<userdesign>;

Knowledge Check

 What are some of the advantages of using ISE[™] and XPS integration?

• What are some of the advantages of using Xflow and XPS integration?

Answers

- What are some of the advantages of using ISE[™] and XPS integration?
 - Add additional logic to the FPGA design
 - Synthesize the design by utilizing ISE-supported synthesis tools
 - Control the FPGA implementation flow by using ISE
- What are some of the advantages of using Xflow and XPS integration?
 - One GUI to perform all design work
 - Simple push-button flow

Knowledge Check

- What is the smallest memory size that PlatGen can generate for a Spartan[™]-IIE device?
- Why is the address 0xFFF_B100 NOT a valid BASEADDR for a Local Memory Bus (LMB) block RAM controller?
- What will the BAUDRATE for the peripheral be:
 - If the MPD file has the following parameter: C_BAUDRATE = 9600
 - If the MHS file has the following parameter: C_BAUDRATE = 115200

Answers

- What is the smallest memory size that PlatGen can generate for a Spartan[™]-IIE device?
 - **2 KB**
- Why is the address 0xFFF_B100 NOT a valid BASEADDR for a Local Memory Bus (LMB) block RAM controller?
 - It is not on a 2n boundary
- What will the BAUDRATE for the peripheral be:
 - If the MPD file has the following parameter: C_BAUDRATE = 9600
 - If the MHS file has the following parameter: C_BAUDRATE = 115200
 - The BAUDRATE will be 115200

Knowledge Check: Memory Space

 How do you build a 48-KB OPB BRAM memory space for a MicroBlaze[™] processor in a Spartan[™]-3E device?

Answers: Memory Space

 How do you build a 48-KB OPB BRAM memory space for a MicroBlaze[™] processor in a Spartan[™]-3E device?

	0x0000_0000
32 KB	
	0x0000_7FFF
16 KB	0x0000_8000
	0x0000_BFFF

Where Can I Learn More?

- Tool documentation
 - Embedded System Tools Guide \rightarrow Xilinx Platform Studio
- Support Website
 - EDK Website: www.xilinx.com/edk

