
© 2007 Xilinx, Inc. All Rights ReservedThis material exempt per Department of Commerce license exception TSU

Address Management

© 2007 Xilinx, Inc. All Rights Reserved

Objectives

After completing this module, you will be able to:

• Describe address management for MicroBlaze processor

• Define a system address space

• Define an advanced user address space

• Describe the object file sections

• Describe what a linker script does

© 2007 Xilinx, Inc. All Rights Reserved

Outline

• Address Management

• System Address Space

• Advanced User Address Space

• Object File Sections

• Linker Scripts

© 2007 Xilinx, Inc. All Rights Reserved

Address Management

• Embedded processor design requires you to manage the

following:

– Address map for the peripherals

– Location of the application code in the memory space

• Block RAM

• External memory

• Memory requirements for your programs are based on the

following:

– The amount of memory required for storing the instructions

– The amount of memory required for storing the data associated with

the program

© 2007 Xilinx, Inc. All Rights Reserved

MicroBlaze Processor

• Memory and peripherals

– The MicroBlaze processor uses

32-bit addresses

• Special addresses

– MicroBlaze processors must have

user-writable memory from

0x00000000 through 0x0000004F

– Each vector consists of two instructions

IMM followed by a BRAI instruction to

address full memory range

0x0000_0000

0x0000_0008

0x0000_0010

0xFFFF_FFFF

0x0000_0018

Reset Address

Exception Address

Interrupt Address

LMB Memory

Reserved

PLB Memory

Peripherals

0x0000_0020

0x0000_0028

0x0000_004F

Break

Hardware Exception

© 2007 Xilinx, Inc. All Rights Reserved

Outline

• Address Management

• System Address Space

• Advanced User Address Space

• Object File Sections

• Linker Scripts

© 2007 Xilinx, Inc. All Rights Reserved

Startup Files

• Startup files setup the language and platform environment before
your application code executes
– Sets up vectors as required (reset, interrupt, exception, etc.)

– Sets up registers (stack pointer, small data anchors, etc.)

– Clears .bss memory region to zero

– Invokes language initialization functions, such as C++ constructors

– Initializes the hardware sub-system (ie. initialize profiling timers)

– Sets up arguments for the main procedure and invokes it

• End files include code that must execute after the program ends
– Invoke language cleanup functions, such as C++ destructors

– De-initialize the hardware sub-system (ie. clean profiling system sub-
system)

The compiler includes pre-compiled startup and end files when forming the executable

© 2007 Xilinx, Inc. All Rights Reserved

System Address Space

• The C runtime file crt0.o is linked with the user program

– Starts at address location 0x0, immediately followed

by the user program

– Populates reset, interrupt, exception and

hardware exception vectors

crt0.o

main

program

0x00000000

Crt0.o initialization file is used when the executable is executed in standalone mode (no debug)

© 2007 Xilinx, Inc. All Rights Reserved

System Address Space

• The C runtime file crt1.o is linked with the user program

– Starts at address location 0x0, immediately

followed by the user program

– Populates all vectors except the breakpoint

and reset vectors

main

program

crt1.0

Crt1.o initialization file is used when the executable is executed in standalone mode (with debug)

© 2007 Xilinx, Inc. All Rights Reserved

System Address Space

• The C runtime file crt2.o is linked with the boot loader

– Starts at address location 0x0, immediately

followed by the user program

– Populates all vectors except the reset vector

Boot

loader

crt2.0

Crt2.o initialization file is used when the executable is loaded using a boot loader

© 2007 Xilinx, Inc. All Rights Reserved

Outline

• Address Management

• System Address Space

• Advanced User Address Space

• Object File Sections

• Linker Scripts

© 2007 Xilinx, Inc. All Rights Reserved

Advanced User
Address Space

• Different base address,

contiguous

user address space

– The user program can run from

any memory PLB, OPB, or LMB

– To execute a program from any

address location other than

default, you must provide the

compiler gcc with a different

Program Start Address

– Enter this option in the Compiler

Settings dialog box

© 2007 Xilinx, Inc. All Rights Reserved

Advanced User
Address Space

• Different base address,
noncontiguous user address
space

– You can place different
components of your program in
different memories

• For example, you can target
code to instruction LMB
memory and the data to
external DDR memory

– Noncontiguous executables that
represent the application must
be created

• To do this, a linker script must
be used

© 2007 Xilinx, Inc. All Rights Reserved

Outline

• Address Management

• System Address Space

• Advanced User Address Space

• Object File Sections

• Linker Scripts

© 2007 Xilinx, Inc. All Rights Reserved

Object File Sections

• What is an object file?
– An object file is an assembled piece of code

• Machine language:
li r31,0 = 0x3BE0 0000

– Constant data

– There may be references to external objects that are
defined elsewhere

– This file may contain debugging information

© 2007 Xilinx, Inc. All Rights Reserved

Object File Sections

.text

.rodata

.sdata2

.data

.sdata

.sbss

.bss

Text section

Read-only data section

Small read-only data section (less than eight bytes)

Read-write data section

Small read-write data section

Small uninitialized data section

Uninitialized data section

Sectional Layout of an Object or an Executable file

© 2007 Xilinx, Inc. All Rights Reserved

Sections Example

int ram_data[10] = {0,1,2,3,4,5,6,7,8,9}; /* DATA */

const int rom_data[10] = {9,8,7,6,5,4,3,2,1}; /* RODATA */

int I; /* BSS */

main(){

...

I = I + 10; /* TEXT */

...

}

© 2007 Xilinx, Inc. All Rights Reserved

Object File Sections

.init

.fini

.ctors

.dtors

.got

.got2

.eh_frame

Language initialization code

Language cleanup code

List of functions to be invoked at program startup

List of functions to be invoked at program end

Pointers to program data

Pointers to program data

Frame unwind information for exception handling

Reserved sections that you typically would not modify

© 2007 Xilinx, Inc. All Rights Reserved

Outline

• Address Management

• System Address Space

• Advanced User Address Space

• Object File Sections

• Linker Scripts

© 2007 Xilinx, Inc. All Rights Reserved

Linker Scripts

• Linker scripts control the linking process
– Map the code and data to a specified memory space

– Set the entry point to the executable

– Reserve space for the stack

• Required if the design contains a discontinuous
memory space

• GNU GCC linker scripts will not work for the
WindRiver Diab compiler

© 2007 Xilinx, Inc. All Rights Reserved

Linker and Locator Flows

.text1

.data1

.bss1

.bss2

.data2

.text2

foo1.o

foo2.o

Link

.text

.data

.bss

0xFFFF

0xF000

0xEFFF

0xEF00

0x0000

0x1FFF

0x2000

0xEEFF

Locate

Merged

Output

Sections

Unused

Executable

Image

Code

uninitialized data

Initialized data

© 2007 Xilinx, Inc. All Rights Reserved

MicroBlaze Processor
Script Example

STACKSIZE = 4k;
MEMORY
{
LMB : ORIGIN = 0x0, LENGTH = 0x1000
OPB : ORIGIN = 0x8000, LENGTH = 0x5000
}

SECTIONS
{

.text : { *(.text) } > lmb

. = ALIGN(4);
_heap = .;

.bss : { _STACK_SIZE = 0x400; . += _STACK_SIZE; . =
ALIGN(4); } > lmb
_stack = .;
. = ALIGN(4);
.rodata : { *(.rodata) } > lmb
.data : { *(.data) } > lmb

}

© 2007 Xilinx, Inc. All Rights Reserved

Sections Command

• This is where most of the work takes place

• Output sections are named, and the input sections are grouped and

linked together into the output sections

• Example:

• Explanation:

– .text is the name of the output section

– { *(.text) *.(init) } includes all input sections named text and init from

the object files being linked

– > bram locates the .text output section in the next available memory

in the block RAM area

.text : { *(.text) *(.init) } > bram

© 2007 Xilinx, Inc. All Rights Reserved

Linker Script Generator GUI

• XPS contains a graphical
Linker Script Generator

• Table-based GUI allows you
to define the memory space
for any section

• Launch from Software →
Generate Linker Script, or
from the Applications Tab,
right-click on <project> →
Generate Linker Script

• The tool will create a new
linker script (the old script is
backed up)

© 2007 Xilinx, Inc. All Rights Reserved

Knowledge Check

• When do you need to use a linker script?

• What does a linker script do?

• List some MicroBlaze processor address space

restrictions

© 2007 Xilinx, Inc. All Rights Reserved

Answers

• When do you need to use a linker script?
– When you have software developed in multiple source files and the

compiled object code needs to be placed in different memory structures or

in nonstandard configurations

• What does a linker script do?
– The linker script controls the placement of the object code, data, stack, and

heap in specific memory locations

• List some MicroBlaze processor address space

restrictions
– If you are not using xmdstub, ensure that crt0 is loaded in memory at 0

– Must have writable memory from 0x00000000 to 0x0000004F

© 2007 Xilinx, Inc. All Rights Reserved

Knowledge Check

• What does .sdata2 section contain?

• What does .sdata section contain?

• What does .sbss section contain?

© 2007 Xilinx, Inc. All Rights Reserved

Answers

• What does .sdata2 section contain?
– Small read-only data

• What does .sdata section contain?
– Small read-write data

• What does .sbss section contain?
– Small un-initialized data

© 2007 Xilinx, Inc. All Rights Reserved

Where Can I Learn More?

• Tool documentation
– Embedded System Tools Guide → Address Management

– Embedded Systems Tools Guide → Stand-Alone Board Support Package

– Embedded Systems Tools Guide → GNU Compiler Tools

• Support Website
– EDK Website: www.xilinx.com/edk

– GNU Website: http://gcc.gnu.org/onlinedocs/gcc-3.4.4/gcc

