
Symbian Academy Training Exercises 

01: Symbian OS Types and Declarations 

 

 
 1 

01: Symbian OS Types and Declarations 

Exercise Instructions 

Goal 
The goal of the first exercise is to get to know the basic data types of Symbian OS as well as the 

console mode of the Symbian OS emulator. 

Introduction 
If you know how powerful the UI of S60 and UIQ is, it might be a bit boring to start with the console 

interface of the emulators. However, this has got several advantages: 

- Time: The start-up time is a lot faster than if the emulators have to load the full UI. Especially 

at the beginning this is very important, as it’s a quick way to try several alternatives for 

different tasks. 

- Complexity: Even a basic “Hello World” GUI application does already require several classes 

and many definitions. For getting to know the general style of Symbian OS development, it’s 

better to start with the console. Development is like with standard C / C++. 

- Independence: The code presented for console applications will work for both S60 and UIQ, 

so the training is more generic and not targeted to specific environments right from the 

beginning. 

Structure of this Exercise 
The entry point of the application is the E32Main()-function, which will catch and output any errors 

(= leaves) that the code might produce. No changes have to be made here. 

The MainL()-function is split up into several different sections: 

- Initialization: Creates the console window for text output. 

- Using TInt, text output: Some basic experiments with TInt variables and text output. 

- Random numbers, TBool and TChar: Lets the user guess a random number, while working 

with some more basic data types of Symbian OS. 

- R Classes: How to use an R type class, in this case the RBuf. 

- Cleanup: Waits for user input and deletes the console. 

C type classes will be examined more closely in the memory management modules, as their usage 

requires knowledge of several other concepts like the cleanup stack or two-phase construction. 

 

 

 



Symbian Academy Training Exercises 

01: Symbian OS Types and Declarations 

 

 
 2 

The final output should look like this: 

 

Detailed Descriptions 

Initialization 
In this section of the training exercise, the text output console is created. This is a C type class and 

therefore has to be created on the heap. Further instructions on how to handle C type classes will be 

presented in the memory management modules. No edits have to be done here. 

Using TInt, text output 
First, this section explains how to format and print text to the console. This works like the printf()-

function of standard C. 

To start off easy, a simple for-loop has to be created, which outputs numbers from 1 to 5, using a 

TInt as counting variable. The current value should be printed using formatted text. 

Random numbers, TBool and TChar 
This section is the main part of this exercise and contains a short number guessing game. The 

computer thinks of a random number from 0..9. The user now has to guess it by entering a number. 

The input is handled in a do / while-loop. A single character is read from the keyboard, which is then 

converted to its numeric value using one of the functions provided by the TChar data type. Next, the 

application checks if the user has guessed the correct number. 

This example could be extended to inform the user if his guess was too high or too low. Also, the 

number of tries could be counted. 

R Classes 
In this section, basic use of R type classes is demonstrated. More detailed explanations of the RBuf 

descriptor are presented in the “Descriptors”-module. 

The RBuf-class manages data on the heap. It is important to know that these classes have to be 

cleaned up by using Close() or Reset() (depending on the class). 



Symbian Academy Training Exercises 

01: Symbian OS Types and Declarations 

 

 
 3 

Cleanup 
Waits for the space character to ensure the user can still read the output. Then, the console is 

deleted. No edits have to be done here. 

Glossary 
You might encounter the following definitions, which will not be familiar to you as of now. The 

following table lists them, along with a short description: 

Term Description 

RBuf One of the Symbian OS descriptors, available since Symbian OS 8. Descriptors 

are the Symbian OS way of C++ strings. 

_LIT Defines a literal = a fixed descriptor (string) that’s stored directly in the 

compiled application. 

Cleanup Stack Allows safe deletion of heap-based objects when used as local variables in a 

function and an error (leave) occurs before the delete-statement can be 

reached. Also applies to R type classes which open a connection to an external 

service. 

Leaves, TRAP The exception handling mechanism of Symbian OS. Exceptions are called 

“Leaves”, they can be caught by using the TRAP / TRAPD-macro. 

 


