
Symbian Academy Training Exercises 

08: Sockets 

 

 
 1 

08: Sockets 

Exercise 

Goal 
In this exercise, you have to implement the sockets communication part for a multiplayer game 

client. 

Introduction 
In this game, the players have to control small spaceships. They float around in space with no gravity 

or air resistance. Several clients are connected to a central server at the same time and try to shoot 

others, while evading bullets that are flying around in space. 

The “Masteroids”-server is started on a desktop PC (the Microsoft .net framework is required!). Its 

task is to visualize the game; this visualization should be projected in the lab, so that every client can 

see it. 

One or more Symbian OS / S60 clients can connect to the server. Each client is allowed to control an 

individual player. It’s possible to rotate the space ship, to accelerate and to shoot. Braking is not 

directly possible and requires turning by 180° and accelerating again. The physics can be configured 

by the server before the game is started. 

 

This exercise requires implementing the socket communication part of the client. It’s also possible to 

extend the task in order to write a custom game AI or to implement a more sophisticated user 

interface for the Symbian OS client application. 



Symbian Academy Training Exercises 

08: Sockets 

 

 
 2 

Structure of this Exercise 
The user interface of the client application is quite basic – it features a menu to connect to the game 

server and to send the login information. A text label displays the current status, error messages or 

information received by the server. 

 

The main task of the Symbian OS client application is to connect to the server through a TCP/IP 

socket connection. After a successful connection + login, the client can send movement information 

for its player. 

The game protocol used for communication between server and client is described in a chapter at 

the end of this document, but is not important for this exercise. The required edits are only related 

to implementing the socket connection, as well as reading from and writing to the socket. 

The game framework as well as the existing UI have been prewritten. Import the provided start 

project into Carbide.c++ and proceed working on the edits. If the import process worked out, the 

application should run without errors, even before any edits have been performed. 

Using the Game Server 
Execute the game server application and (optionally) configure the physics of the world. Note that by 

default a maximum of 10 players is allowed. If projecting the game, set the size of the game field to 

fill as much of the available resolution as possible. 

 



Symbian Academy Training Exercises 

08: Sockets 

 

 
 3 

Start the game server to allow clients to connect to the server. When a client is connected to the 

server but has not sent the login information yet, it is displayed as “-- unknown --”. You can also 

connect the sample PC implementations of a simple key client and a simple AI client to the server. 

This is useful to test the game before implementing the Symbian OS client. 

 

Once one or more players are connected, you can start the game at any time. After you got to the 

game screen, you can start the game by clicking on the “GO”-button.  

 

Only while the game is active, players are allowed to send control messages. Whenever a client does 

not behave according to the protocol, an information message is displayed by the server. 



Symbian Academy Training Exercises 

08: Sockets 

 

 
 4 

 

The game will run until the time is over or one of the players has won the game. 

To test the application, the game server can be run on the same PC as the S60 emulator. In this case, 

connect the emulator to the IP 127.0.0.1. The default port (45315) should usually work fine. To run 

the game in a lab, start the game server on the PC that is connected to the projector. Hand out the IP 

of this PC and make sure that the firewall and the router don’t block the port 45315. 

Your Task: The Sockets Engine 
The engine that encapsulates the socket connection is the main focus of this exercise. It is split up 

into three active objects: 

- SocketsEngine.cpp 

- Responsible for opening a connection to the sockets server 

- Connecting a socket to the remote game server 

- Manages the reader / writer classes for transferring data through the socket 

connection 

- SocketsWriter.cpp 

- Sends messages through the socket to the game server 

- SocketsReader.cpp 

- Waits for messages from the game server and informs the listener whenever a 

message was received. 

Whenever a message has been received or in case a problem occurs, the sockets engine classes 

inform a listener, which implements the (custom) MSocketsNotifier interface. In this example, this 

is the CMasteroidsEngine-class. 



Symbian Academy Training Exercises 

08: Sockets 

 

 
 5 

General Structure 
This section contains a short textual description of the general application structure. This exercise 

doesn’t require modifying or extending other parts than the sockets engine, but it may still be helpful 

to know more about the pre-written framework. 

The user interface (managed by the CSocketsClientContainerView and 

CSocketsClientContainer, according to the S60 view architecture) consists of two label controls. 

One of them is used by the application to display information / error messages. 

Through the options-menu, the game engine (CMasteroidsEngine) can be instructed to connect to 

the server and to log in. The IP of the server and the username are hardcoded in the menu selection 

methods (in the CSocketsClientContainerView-class). 

During the game, the left / right / up (accelerate) key events and the centre joystick (fire) are 

processed by the game engine. Messages are prepared according to the game protocol and are sent 

to the game server (obviously through the sockets engine). 

The game processes several of the messages sent by the game server. Some message types are 

ignored, as they would only be required when implementing an AI or a client-side visualization. 

Whenever a message is received by the reader-class, a call-back method of the game engine (defined 

through the MSocketsNotifier-interface) is executed. 

When the game / sockets engines want to display information- or error-messages to the user, they 

sent it through the MMessageDisplay-interface, which is implemented by the container that owns 

the label control. 

Exercise 
An overview of the edits that have to be done to complete this exercise: 

Sockets Engine 
Edits 1 – 4: SocketsEngine.h 

Edits 5 – 18: SocketsEngine.cpp 

The main goal of the edits in the sockets engine class is to establish the connection to the socket 

server and to connect the socket to the game server. As the sockets engine also manages the two 

active objects that are responsible for writing to / reading from the socket connection, it has to 

create instances of those two classes. 

Sockets Writer 
Edit 19: SocketsWriter.h 

Edits 20 – 27: SocketsWriter.cpp 

The sockets writer just has to send messages (compiled by the game engine) over the socket 

connection (opened by the sockets engine). To make sure that the message still exists when the 

Symbian OS socket server handles the asynchronous sending process, the sockets writer has to 

create a local copy of the message. 



Symbian Academy Training Exercises 

08: Sockets 

 

 
 6 

Sockets Reader 
Edits 28 – 29: SocketsReader.h 

Edits 30 – 36: SocketsReader.cpp 

The sockets reader has to wait until data is received from the socket. Whenever this is the case, the 

RunL() method of the active object is executed. If a message was received, the sockets reader has to 

inform the game engine. 

View Class and General Edits 
Edits 37 – 39 + two TODOs: SocketsClientContainerView.cpp 

The edits in this class are necessary to call the connect method of the sockets engine. An object that 

stores the URL as well as the port has to be created. Two literals marked with TODO contain the 

address of the server and the username of this client, which should be adapted. 

Possible Extensions 
The tasks described below are optional. They extend the original application with new features and 

require working independently, without instructions of the steps needed to complete them. All of 

the possible extensions (except DNS) are not covered in the Symbian Academy course materials. 

DNS 
As the game server is intended to be started in the local network, the socket engine of this exercise 

directly connects to an IP address. Add a feature that allows dynamic host name resolution (DNS), in 

order to allow specifying a host name instead of only an IP. 

User Interface 
Extend the application to offer dialogs for entering the player name and the target IP address / port. 

Implement a more sophisticated design to display the current status of the client and the game. Also, 

extend the user interface to allow disconnecting from the server without closing the application. 

Visualization 
Implement a (scaled down) visualization of the game field on the client.  

Note: This task is not directly related to Symbian OS training. 

Artificial Intelligence 
Implement an AI client for the game using the protocol information below. The server sends out 

information about the players and the bullets in regular intervals. The data is sufficient to implement 

an own AI algorithm. 

Note: This task is not directly related to Symbian OS training. 

  



Symbian Academy Training Exercises 

08: Sockets 

 

 
 7 

Protocol and Details 
The provided Symbian OS client ignores the game status messages sent by the server. If you want to 

visualize the game on the client or implement your own AI, it is necessary to interpret the rest of the 

messages from the server. This chapter presents an overview of the protocol used by the game. 

Protocol Flow Diagram 
First, the client has to log in and gets a response indicating if 

the request was successful. 

When the server starts the game, the physics of this round are 

sent to the clients, followed by a “go”-message. 

During the game phase (only between “go” and “stop”), the 

server regularly sends player and bullet information messages. 

The clients can send their control information to move their 

space ships. 

When the round is over, the server sends a “stop” message to 

the clients. 

Protocol Specification 
The protocol is sent over TCP, values have to be coded in little-endian. 

General definition 

Each message consists of the following parts: 

- MID = Message ID 

- Size = Length of the following payload 

- Payload = Data, depending on the message (as specified by the MID) 

2 Byte UINT 2 Byte UINT 0 – N Bytes 

MID Size Payload 

Messages 

The following messages are defined in the protocol: 

Login Request Message (Client  Server) 

MID Length N Bytes 

1 N ASCII string – nickname 

 

Login Response Message (Server  Client) 

MID Length 1 Byte 

2 1 Login success (1 = OK, 0 = NO) 

 

 



Symbian Academy Training Exercises 

08: Sockets 

 

 
 8 

Physics Message (Server  Client) 

MID Length 24 Bytes 

3 24 Physics values 

 
- 2 Byte UINT: playfield size X [Pixel] 
- 2 Byte UINT: playfield size Y [Pixel] 
- 2 Byte UINT: number of players in game  
- 2 Byte UINT: maximum number of lifes per player  
- 2 Byte UINT: maximum ship velocity [pixels / second] 
- 2 Byte UINT: ship‘s thrust *pixels / second2] 
- 2 Byte UINT: ship‘s angular velocity *degrees / second+ 
- 2 Byte UINT: ship‘s weapon cooldown *ms+ 
- 2 Byte UINT: Bullet velocity; [pixels / second]  
- 2 Byte UINT: maximum number of bullets on screen [bullets / player]  
- 2 Byte UINT: bullet radius [pixel]  
- 2 Byte UINT: radius of ship‘s bounding sphere *pixel+ 

 
Go / Stop Message (Server  Client) 

MID Length 1 Byte 2 Bytes 

4 3 Go-flag (1 = start, 0 = stop) Assigned player ID 

 

Control Message (Client  Server) 

MID Length 1 Byte 1 Byte 

5 2 Action Parameter 

 

- Action = 0: Rotation 

- Parameter = 0: No Rotation 

- Parameter = 1: Rotate Left  

- Parameter = 255: Rotate Right  

- Action = 1: Thrust  

- Parameter = 0: Thrust off 

- Parameter = 1: Thrust on 

- Action = 2: Fire  

- Parameter unused  

  



Symbian Academy Training Exercises 

08: Sockets 

 

 
 9 

Players Info Message (Server  Client) 

MID Length 2 Byte UINT 14 Bytes 14 Bytes … 

6 2+14*P Number of players (P) Player info Player info … 

 
- 2 Byte UINT: Player ID 
- 2 Byte UINT: Remaining Lifes  
- 2 Byte UINT: Position X [pixels] 
- 2 Byte UINT: Position Y [pixels] 
- 2 Byte SINT: Velocity X [pixels / second] 
- 2 Byte SINT: Velocity Y [pixels / second] 
- 2 Byte UINT: Rotation [degrees] 

 

Bullets Info Message (Server  Client) 

MID Length 2 Byte UINT 10 Bytes 10 Bytes … 

7 2+10*B Number of bullets (B) Bullet info Bullet info … 

 
- 2 Byte UINT: Player ID 
- 2 Byte UINT: Position X [pixels] 
- 2 Byte UINT: Position Y [pixels] 
- 2 Byte SINT: Velocity X [pixels / second] 
- 2 Byte SINT: Velocity Y [pixels / second] 

 

Coordinate System 

The playfield is specified by a top down coordinate system. The total size can be configured by the 

server ( physics settings). 

The following image visualizes the positions and velocity vectors of players and bullets.  

 

  



Symbian Academy Training Exercises 

08: Sockets 

 

 
 10 

Rotation of the players is measured in a top down coordinate system: 

 

Accumulation and Fragmentation 

It isn’t guaranteed that messages are retrieved in one packet and that each of the received packages 

only contains one message. This also applies to the Symbian OS RecvOneOrMore()-call – the data that 

is read can be received in one of the following ways: 

 
Usually, messages are received in exactly the same structure as they are 

sent. 

 
Sometimes, several messages can be accumulated in one package  

(e.g. when sent shortly after each other) 

 
Messages can be split up and read through multiple calls to the read-

method (e.g. when the read-buffer is too small) 

 
Combination of the possibilities above. 

 

The following diagram visualizes the data transfer between server and client: 

 

To correctly parse the protocol, the client should buffer the messages and parse them after they 

have been received. It should be prepared to have more than one message in the buffer and should 

not have problems if a message is not yet fully received. The game engine implementation provided 

with the sample Symbian OS client does already implement this behaviour. 


