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Tool Chain

This lecture examines 

• The Symbian OS tool chain and development environment

The emphasis is on providing a background and purpose of the tools

• Tools are only really learnt by use and experience
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Fundamentals of Symbian OS

Build Tools

‣ Understand the basic use of bldmake, bld.inf and abld.bat

‣ Understand the purpose and typical syntax of project definition (MMP) files

‣ Understand the role of Symbian OS resource and text localization files
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 Build Tools

To build a Symbian OS program two build files are required:

• The component description file (bld.inf)

• The project definition file (projectname.mmp)
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Build Processing

Symbian OS has its own platform-independent build file format 

• Used by bld.inf 

• To specify how a program is built

The bldmake tool 

• Processes the bld.inf component description file 

• Which contains the associated project definition files

• To generate a batch file - abld.bat 
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Build Processing

The bldmake tool can be called with the following options:

• bldmake bldfiles generates abld.bat and associated .make files

• bldmake clean removes all files generated by bldmake bldfiles

• bldmake inf displays the basic bld.inf syntax

• bldmake plat displays a list of supported build platforms
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Build Processing

Build platforms 

• Represent the various target platforms and thus binary formats

When abld.bat is invoked

• For example - to build code 

• The particular platform (emulator or hardware) is specified as an argument

The most commonly used build platforms are:

• WINSCW which creates x86-format binaries for running code on the Windows emulator

• GCCE or ARMV5 which create binaries to run on phone hardware 

- Built with the GCCE and RVCT compilers respectively
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Build Processing

When one of the platforms is specified 

• As an argument to the abld.bat command

• The makefile for that platform is generated and executed

The syntax of bld.inf is straightforward

• Its main purpose is to list project definition files

• And files that the build tools must export to another location before a build takes 
place

In the simplest case

• bld.inf lists just one project definition file to be built

• Specified following the PRJ_MMPFILES keyword
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bld.inf Keywords

More complex bld.inf files

• Can be made up of a number of sections 

Using the following keywords:

PRJ_TESTMMPFILES 

• Specifies one or more project definition files for test code 

• Which can be built by invoking abld test build rather than abld build
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bld.inf Keywords

PRJ_EXPORTS

• Lists a series of files to be copied from the project directory to another directory 

• Usually somewhere under \epoc32 

• The export can be initiated by calling abld export 

• The export is performed automatically as part of the abld build command 

PRJ_TESTEXPORTS 

• Lists a series of files to be copied from the project directory to another directory

• Usually somewhere under \epoc32

• The copy can be initiated by calling abld test export 

• Performed automatically as part of the abld test build command
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bld.inf Keywords

PRJ_PLATFORMS 

• Can be used to list the platforms that the component supports

If this is not specified

• The abld command uses the default set

Each of the keywords 

• Can be specified multiple times in any order

In addition to these keywords

• Extension makefiles can be used for build tasks 

• Which are not offered by the generated makefiles 

• Such as invocation of specialized tools or conversion utilities
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Build Processing

When a change is made to bld.inf 

• For example - to add a new header file under PRJ_EXPORTS 

• bldmake bldfiles must be called again 

• To generate a new version of abld.bat 

• Plus any build makefiles that it uses

The abld.bat command 

• Can be invoked from the command line with various arguments

The most commonly used are as follows ...
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abld.bat Command Line Arguments

abld build 

• Combines a number of other arguments 

• export, makefile, library, resource, target and final 

• To build the components specified as MMP files under the PRJ_MMP-FILES specifier in 

the bld.inf file

abld test build 

• builds those components specified under PRJ_TESTMMPFILES in bld.inf
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abld.bat Command Line Arguments

abld makefile 

• Using the Symbian OS makmake tool

• Creates the makefiles for each project specified in bld.inf

• The makefiles are then used by abld to carry out the various stages of building the 

component

• This command is called each time a component is built

• The makefiles are always re-created

• Regardless of whether the corresponding MMP files have been changed or not since their last 
creation
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abld.bat Command Line Arguments
abld freeze 

• Freezes new DLL exports into .def files

abld clean 

• Erases all the files created by a corresponding abld target command 

• All the intermediate files created during compilation 

• All the executables and import libraries created by the linker

abld reallyclean 

• Does what abld clean does

• Also removes files exported by abld export 

• And makefiles generated by abld makefile or the abld test equivalents

15



Tool ChainFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

abld.bat Command Line Arguments

Each command 

• Can be invoked on the projects specified under PRJ_MMPFILES in bld.inf

• By using abld XXX where XXX is the command

• On test projects specified under PRJ_TESTMMPFILES 

• By using abld test XXX
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Project Definition Files and MMP File Syntax

A project definition file 

• Is a text file which gives the details needed to build a project 

• Usually referred to as a project’s MMP file

These include 

• The project’s source files

• The import libraries 

• The locations of files included through use of #include preprocessor directives

Each statement in a project definition file starts with a keyword ...
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Project Definition Files and MMP File Syntax
 The main keywords will be described for a typical MMP file as follows:

TARGET              ASDExample.exe
TARGETTYPE          exe
UID                 0 0xF1101100
CAPABILITY          NONE
SOURCEPATH          ..\src
SOURCE              ASDExampleAppUi.cpp
SOURCE              ASDExampleDocument.cpp

SOURCE              ASDExampleApplication.cpp

SOURCE              ASDExampleView.cpp

SYSTEMINCLUDE       \epoc32\include
USERINCLUDE         ..\inc
SOURCEPATH          ..\data
START RESOURCE      ASDExample.rss
TARGETPATH          \resource\apps
HEADER
END
START RESOURCE      ASDExample_reg.rss
TARGETPATH          \private\10003A3F\apps
END
// Generic Symbian OS libraries

LIBRARY euser.lib efsrv.lib ... // Others omitted for clarity
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Project Definition Files and MMP File Syntax

TARGET 

• Specifies the name of the file that will be built - ASDExample.exe

TARGETTYPE 

• Indicates the type of file to be built

• In this case an executable application (EXE)

The most commonly used Symbian OS target types are

• DLL

• EXE 

• PLUGIN (ECOM plug-in)
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Project Definition Files and MMP File Syntax

Other supported TARGETTYPEs include 

• PDD - physical device driver

• LDD - logical device driver

• LIB  - a static library whose binary code is included directly in any component that 

links against it

• EXEXP  - an executable which exports functions

EPOCEXE and EXEDLL

• Are sometimes used in Symbian OS EKA1 

• Are no longer necessary in EKA2 because of its improved process emulation
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Project Definition Files and MMP File Syntax

UID 

• Specifies the final two of the target’s three Unique Identifiers to identify the component

The target will have three UIDs

• The first value (UID1) does not need to be given 

It is automatically applied by the build tools according to the TARGETTYPE

No two executables 

• May have the same UID3 value

• Values must be requested from Symbian Signed

• Allocated them from a central database
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Project Definition Files and MMP File Syntax

SECUREID 

• Is an optional keyword which is not used in the example

• Used to define the Secure Identifier (SID) for an executable 

• Used to identify it

The SID 

• Can be specified by a SECUREID statement in the project’s MMP file

• If it is not specified the UID3 value is used instead

In MMP files where UID3 is not specified 

• KNullUID (=0) is used as both the SID and UID3 value
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Project Definition Files and MMP File Syntax

VENDORID 

• Is an optional keyword (not used in the example given)

• New in Symbian OS v9.1 

An EXE 

• May contain a vendor ID (VID)

• Specified by the VENDORID keyword

• The use of a VID identifies the supplier of the binary

• Its use is not mandatory

23



Tool ChainFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Project Definition Files and MMP File Syntax

CAPABILITY 

• A new keyword in Symbian OS v9.1 

• Used to restrict the use of certain sensitive system APIs 

• To callers with a particular level of privilege 

The capabilities assigned to an executable 

• Listed following the CAPABILITY keyword

If the CAPABILITY keyword is not used

• The capabilities assigned to the binary default to CAPABILITY NONE
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Project Definition Files and MMP File Syntax

The maximum set of capabilities 

• That can be used can be specified by CAPABILITY ALL

• Very few components are built with this level of privilege

In general

• For code which has a high level of privilege

• The maximum set of capabilities specified will be CAPABILITY ALL -TCB
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Project Definition Files and MMP File Syntax

SOURCEPATH 

• Specifies the location of the source or resource files listed in the SOURCE declaration

• Can be a relative location 

• Or a fully qualified path

The keyword 

• Can be used multiple times to specify different directories 

• Can be omitted entirely if all source files are in the same directory as the MMP file.
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Project Definition Files and MMP File Syntax

SYSTEMINCLUDE 

• Specifies the directory in which files included in the code 

• Using #include <> can be found

All global headers 

• Should be stored in \epoc32\include 

• or a subdirectory thereof
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Project Definition Files and MMP File Syntax

USERINCLUDE 

• Specifies the directory in which files included in code 

• Using #include "" can be found.

• Can be a relative path 

• or a fully qualified path

Directories specified with USERINCLUDE 

• Are only one of three locations that may be searched for header files 

The two other directories:

• The source file directory

• The SYSTEMINCLUDE directory.
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Project Definition Files and MMP File Syntax

START RESOURCE...END 

• Specifies a resource file

• which contains text and specifications of user interface elements

These keywords 

• Replace the use of RESOURCE statements 

(that were used in MMP files in versions of Symbian OS earlier than v9.1)

An application may have several resource files

• Each is specified separately in START RESOURCE … END blocks

If the project has a GUI

• At least one of these resource files will be needed
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Project Definition Files and MMP File Syntax

START RESOURCE 

• Indicates the beginning of a block of information about an application resource file

The resource file 

• Should be the same directory as the MMP file 

• Or in a directory specified by a preceding SOURCEPATH declaration

END

• Indicates the end of the resource file information block 
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Project Definition Files and MMP File Syntax

In the example 

• The second block specifies a registration resource file for the ASDExample application

This file contains 

• Non-localizable information required by the application launcher 

START RESOURCE      ASDExample_reg.rss
TARGETPATH          \private\10003A3F\apps
END
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Project Definition Files and MMP File Syntax

Such as

• The application’s name

• UID and properties

• And other information used by the launcher 

For example 

• The application’s caption the name displayed for the application in the system shell

• And its icons are defined separately so that they can be localized

The location of these definitions

•  Is provided in the registration file
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Project Definition Files and MMP File Syntax

TARGETPATH 

• Specifies the build location for a compiled resource (.rsc) as described later in this section

In the example

• The ASDExample.rss resource is compiled 

• To generate output in the \resource\apps directory 

• This is the standard location for compiled resource files

The second resource

• The registration file is built to \private\10003a3f\apps 

• Which is the standard location for registration information
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Project Definition Files and MMP File Syntax

The build location 

• For binaries resulting from compilation of C++ code 

• Used to be specified using the TARGETPATH keyword

However 

• In the secure platform of Symbian OS v9.1

• All executable code must run from the phone’s \sys\bin directory

(This is covered more in a later lecture on Platform Security)

• The TARGETPATH keyword is thus now redundant 

• Except to build resource files to their appropriate locations
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Project Definition Files and MMP File Syntax

HEADER 

• Is an optional keyword

• Causes a resource header file (.rsg) to be created in the system include directory 

(\epoc32\include) 

• This allows the C++ code to use the names of specific resources 

• Defined in the associated resource file

In the example 

• A header file is generated for access to the resources 

• Specified in ASDExample.rss

• No resource header file is generated for the registration resource file
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Project Definition Files and MMP File Syntax

LIBRARY 

• Lists the import libraries needed by the application

• No path needs to be given

• Each library statement may contain several libraries separated by a space

• More than one LIBRARY declaration may also be used
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Project Definition Files and MMP File Syntax

EPOCSTACKSIZE 

• Keyword can be used to increase the stack size 

• To the following decimal or hexadecimal value

This option should be used with care

• Allocating extra stack space to one application

• Reduces the available space for others

If an application demands a large stack 

• It should be analyzed for potential improvements and optimizations
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Project Definition Files and MMP File Syntax

EPOCHEAPSIZE 

• Is an optional keyword - is not used in the example 

• It can be used to specify the minimum and maximum sizes of the initial heap for a process

• Either as decimal or hexadecimal values 

• The default sizes are 4 KB minimum and 1 MB maximum

The minimum size 

• Specifies the RAM that is initially mapped for the heap’s use 

• The process can then obtain more heap memory on demand until the maximum value is 
reached 

• The values specified are rounded up to a multiple of the page size (4 KB)
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Project Definition Files and MMP File Syntax

EXPORTUNFROZEN 

• Is an optional keyword 

• Used by DLLs that are not frozen to have complete .def files

• The .lib import library is created and all exported functions 

• Including unfrozen ones appear in the import library
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Resource Files

Resource files 

• Are typically used to specify the user interface elements of a GUI application

• Such as the menu bars and dialogs

• They can also be used for any application type

Resource files are also used to define:

• The behavior and functionality of a Symbian OS application

• The application properties that are used by the application launcher

• Other literal strings and constant data used in the application 

• e.g. dialog text and error messages
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Resource Files

To maintain platform independence for a range of hardware

• The resource specifications are kept separate from the executable for each target platform 

Resources are specified 

• In a human-readable text file 

• Compiled independently with the Symbian OS resource compiler into a separate binary

This separation 

• Reduces the effort required to move applications between different hardware platforms
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Resource Files

The syntax used for resource specification 

• Provides good support for localization 

• By allowing a separation of text from graphics

This not only facilitates translation 

• But also allows a multi-lingual application to be created 

• Without recompilation of the main application code 

• The application is supplied as a single executable

• Together with a number of language-specific resource binaries
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Resource Files

Resource files 

• Are written as text files in a Symbian OS-specific syntax

They are then compiled on their own 

• Using the command-line resource builder tool epocrc 

• First passing the resource file through the C++ pre-processor 

• Compiles it with the Symbian OS resource compiler rcomp

Or as part of the standard build tool chain

• From the command-line or within an IDE
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Resource Files

Resource files 

• Contain elements which begin with one of the Symbian OS resource keywords 

Such as 

• RESOURCE 

• STRUCT 

• ENUM

The resource file is named with the extension .rss

• When the resource compiler is invoked on the .rss file

• It generates two outputs ...
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Resource Files

The resource compiler generates two outputs

• The binary resource file as a .rsc file

• a .rsg header file in \epoc32\include 

• Which is built if the MMP file specifies the HEADER keyword in the START 
RESOURCE … END block

The .rsg file 

• Contains #define statements for each resource defined in the .rss file

• The header can be used by C++ application code

• To access elements in the resource binary

• By including it using the #include pre-processor directive
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Resource Files

A localization file is a text file typically named with 

• A .rls extension for UIQ

• A .loc extension for S60

• Included directly in the resource file

Other Symbian OS header file types 

• That can be used in a resource file include

.hrh 

• A header file that can be shared between C++ and resource files

.rh 

• A header file used purely by a resource file
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Fundamentals of Symbian OS

Hardware Builds

‣ Understand that the ARM C++ EABI is an industry standard optimized for embedded 
application development

‣ Recognize basic information about the RVCT and GCCE compilers, which can be used for 
target hardware builds

‣ Understand that ARMV5 supports both 32-bit ARM and 16-bit THUMB instructions, and 
appreciate the difference with respect to speed and size
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The EABI Standard

Symbian OS natively runs on ARM processors

• Code must be built with a compiler supporting the Embedded Application Binary Interface 
(EABI)

• This is a standard for the interfaces of binary code running in ARM environments

• It allows the inter-operation of binaries produced by different compilers that conform to the 
standard

The standard was designed 

• To give efficient memory usage and data access time 

• Interoperability between different compiler vendors

48



Tool ChainFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The EABI Standard

The Symbian OS build tools define native build targets that invoke either:

• A suitable version of the GNU Compiler Collection (GCC), for which the target is identified 
by the Symbian OS build tools as GCCE

• ARM’s RealView Compiler Tools RVCT 2.2, for which the target is identified by the Symbian 

OS build tools as ARMV5

RVCT is intended for 

• Symbian licensees such Nokia and Sony Ericsson to build ROMs for their handset products

GCCE is intended for the majority of Symbian developers 

• It is delivered with any SDK for phone products based on Symbian OS v9.1 

• It is also available for free download on the Internet
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The GCCE Target Compiler

GCCE is a version of the Open Source GNU C++ compiler

• It is intended only for building applications

• It cannot be used to compile the full OS

GCCE can be used either 

• From the command line 

• Or invoked from within a development IDE such as CodeWarrior or Carbide.c++

The GCCE build target 

• Uses the same .def file format as the ARMV5 target

• The tools default to looking for .def files in the project’s \EABI directory
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The GCCE Target Compiler

The GCCE compiler is very strict 

• In checking the source code conforms to the ANSI C++ standard

• Some source code which previously compiled with less strict compilers (for example RVCT 
2.1) may no longer compile.
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The RVCT Target Compiler

RVCT is used by Symbian to compile Symbian OS 

• And by its licensees to develop ROM-based code 

• It gives the best performance and smallest code compared to other alternatives 

• It must be purchased separately

Like GCCE 

• RVCT can be used either from the command line 

• Or invoked from within a development IDE such as CodeWarrior or Carbide.c++
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ARM and THUMB

All current Symbian OS smartphones 

• Are based on the ARM processor 

Which has two instruction sets: 

• A 32-bit set (known as ARM)

• A 16-bit set (called THUMB)

• Code compiled to one set can interoperate with the other 

The ARM instruction set is fast 

• Uses more memory per instruction

THUMB is more compact but slower

• That is more instructions are required to perform the same work
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ARM and THUMB

The build tools apply this policy when building projects: 

• Kernel-side code is built for ARM

• while other code (user-side) is built for THUMB 

• All code builds into the same ARMV5 subdirectory of \epoc32\release\
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ARM and THUMB

There are a number of ways to override the policy and to build user-side code 
for ARM:

• In the bld.inf file the BUILD_AS_ARM qualifier can be used to instruct an ARMV5 build 

not to build the project for the THUMB instruction set

• But explicitly for the ARM instruction set

• To specify that a project should always be built as ARM in an MMP file

• The keyword ALWAYS_BUILD_AS_ARM can be specified

PRJ_MMPFILES

ASDExample.mmp BUILD_AS_ARM
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Fundamentals of Symbian OS

 Installing an Application to Phone Hardware

‣ Recognize the package file format used for creation of SIS installation files
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Installing an Application to Phone Hardware

Unlike the Windows emulator

• Where binaries can simply be copied for testing

The only way to deploy code onto phone hardware 

• Is for the software installer to read it from an installation package or SIS file (.sis extension)

To create a SIS file

• A package file (.pkg) is used to specify the files and metadata associated with an application 

• Which is passed to the SIS file creation tool (MakeSIS)

The package file contains 

• A list of the files, rules, options and dependencies required for the application
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Installing an Application to Phone Hardware

The PC-based MakeSIS tool 

• Reads the .pkg package file and generates a SIS installation 

The SIS file contains

• All the information necessary for the Symbian OS software installer to install an application to 
the phone

• Except for the digital signature

Not most handset manufacturers 

• Will require installation packages to be digitally signed before the application contained can be 
installed onto the phone
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Installing an Application to Phone Hardware

The following is an example of a package file for the ASDExample application 

• In a .pkg file lines preceded by semi-colons are comments and blank lines are ignored

Continued ...

; ASDExample.pkg

; Languages - English and French

&EN, FR
; List of localized vendor names

%{"SymbianPress", "SymbianPress"}
; The non-localized, globally unique vendor name

:"SymbianPress"
; Package header

#{"ASDExample"}, {"ASDExample"}, (0xF1101100), 1, 0, 0, TYPE=SA
; ProductID for UIQ 3.0

[0x101F6300], 3, 0, 0, {"UIQ30ProductID"}
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Installing an Application to Phone Hardware
; Files to install for my directory application

; Paths are relative or fully qualified

{"english_info.txt" "french_info.txt"} -

"!:\Documents\ASDExampleGuide.txt"

"..\epoc32\release\gcce\urel\ASDExample.exe"-

"!:\sys\bin\ASDExample.exe"

"..\epoc32\data\Z\Resource\Apps\ASDExample.rsc"-

"!:\Resource\Apps\ASDExample.rsc"

"..\epoc32\data\z\Private\10003a3f\Apps\ASDExample_reg.rsc"-

"!:\private\10003a3f\import\apps\ASDExample_reg.rsc"

IF tkeyboard=1 ; phone has keypad only

"keypad_shortcut_config.txt"-"!:\private\F1101100\shortcut.txt"

ELSEIF tkeyboard=2 ; phone has full QWERTY keyboard

"keyboard_shortcut_config.txt"-"!:\private\F1101100\shortcut.txt"

ELSE ; Display a "No shortcuts are available for this phone" message

    "noshortcut.txt"-"", FILETEXT, TEXTCONTINUE

ENDIF

"readme.txt"-"", FILETEXT, TEXTCONTINUE
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Installing an Application to Phone Hardware

The line preceded by & is the languages section

• It lists the supported language variants for the application

• Using two-character codes as set out in the Languages Table of the Symbian OS Library 

In the example  

• The ASDExample.exe application supports English (EN) and French (FR)

The sections preceded by % and : 

• Are the localized and non-localized vendor names 

• Localized vendor names are used in dialogs shown to the user

• While the non-localized vendor name is used internally by the software installer
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Installing an Application to Phone Hardware

The line beginning with # is the package header

• This line provides the name of the application which is displayed in the installation dialogs

• The application’s UID (as specified in the MMP file), version information and the installation 
package type

The package type indicates the type of installation

• Since different types have different rules on how files may be installed or uninstalled

The example uses TYPE=SISAPP  

• Can also be specified using the abbreviation SA 

• Or omitted entirely since it is the default

• This type identifies the component to be installed as an application

• Other types include a patch type and a partial upgrade type
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Installing an Application to Phone Hardware

The line beginning with a hexadecimal UID in brackets is mandatory 

• Is used to ensure that only applications designed and tested for specific phone hardware can 
be installed to it

• The important values are the hexadecimal UID (0x101F6300) and the string in quotes 

(UIQ30ProductID) 

In the example

• These restrict the installation of ASDExample.exe to UIQ 3.0 phones

• The equivalent for a phone which runs on the S60 3rd Edition platform is [0x101F7961], 
0, 0, 0, {"Series60ProductID"}
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Installing an Application to Phone Hardware

Condition blocks (IF ... ELSEIF ... ELSE ... END) 

• May be used to control aspects of the installation

In the example 

• The condition block tests the TKeyboard attribute (from HalData::TAttribute) at install 

time 

• Installing a shortcut configuration file according to whether the phone has a full QWERTY keyboard 
or a simple numeric keypad.
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Installing an Application to Phone Hardware

If the TKeyboard attribute is neither of the values expected (=1 or =2)

• The contents of a text file (noshortcut.txt) is displayed to the user during the installation

• As it is not installed onto the phone, no destination location is specified for it

The instruction includes some options for the display: 

• FILETEXT indicates to display the file during installation 

Other options include running an executable or creating a blank file in a specified location

• TEXTCONTINUE provides a continue button which will dismiss the text file and continue 

installation

Other options include forcing the installation to exit or offering the user the opportunity to abort the 

installation 
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Installing an Application to Phone Hardware

These kinds of file display 

• Can also be useful for showing basic information 

• Such as a license agreement at installation time

The example 

• Also uses it to show a readme.txt file during the installation of ASDExample.exe

The rest of the package file lists the files to install
• The filename before the hyphen indicates a file on the PC

• While the location after the hyphen is the destination path on the phone
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Specifying an exclamation mark 

• In place of a drive letter in the target filename is recommended

• It means the user will see a dialog to give a choice of drive on which to install the application

If the drive were to be hard-coded 

• The user may not have space available on that particular drive, which would make it impossible 
to install to it

• It is better to offer the user a choice of installation drive.

The line prefixed with { specifies a list of files

• Of which only one will be installed

• Depending on the language selected by the user during installation.
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Fundamentals of Symbian OS

  The Symbian OS Emulator

‣ Understand the purpose of the Symbian OS emulator for Windows

‣ Recognize differences between running code on the emulator and on target hardware
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The Symbian OS Emulator

The Symbian OS emulator is a Windows application 

• Called EPOC.EXE which simulates phone hardware on the PC

• It is in effect a port of the Symbian OS kernel to the Win32 platform

The emulator enables Symbian OS

• Software development to be substantially PC-based in its early stages

• The final development stages will require the use of phone hardware.

The emulator runs in a single process

• Which means that on Windows each Symbian OS process is actually loaded as a DLL

• And runs inside a separate thread within the single Win32 emulator process
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Reasons for Using the Symbian OS Emulator

The emulator saves time in the early stages of development 

• Because a code development IDE such as CodeWarrior or Carbide.c++ 

• Can be used to debug the code and resolve most initial bugs and problems

For example if a panic occurs in the code

• The debugger can provide comprehensive information to diagnose the error condition that 
caused it
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Reasons for Using the Symbian OS Emulator

For hardware testing

• An installation file must be created signed if necessary

• Transferred to the phone and installed 

This can be time-consuming 

• In the early phases of development when code changes are frequent

• The emulator does not need code to be formally installed

• Which makes the development process much faster
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Reasons for Using the Symbian OS Emulator

For emulator builds the system also writes output to file 

• Which can be inspected for information if a panic occurs 

• To check for system warnings such as platform security violations 

The file is located 

• In the directory associated with the Windows TEMP environment variable 

• Is named epocwind.out (\%TEMP%\epocwind.out)
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Reasons for Using the Symbian OS Emulator

The emulator can be configured 

• Through an initialization file called epoc.ini 

• Is stored in \epoc32\data where all configuration files are located for the emulator

For normal use epoc.ini 

• Does not need to be modified

But it can be used  - for example 

• To add customized virtual drives

• Change the size of the heap

• Or map areas of the emulator fascia to act as virtual keys 

Allowing emulation of phone hardware keys such as the navigation buttons

73



Tool ChainFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Differences Between the Emulator and Phone Hardware

The emulator programming environment 

• Tends to be more forgiving than that for native code running on phone hardware

• For example ...

• Code which uses non-constant static variables will compile for the emulator, but will not 
compile for the ARM platform

Some code may run successfully on the emulator but fail on a real phone

• For example ...

• It is possible for one process to access the memory of another process on the Windows 
emulator without causing a memory exception

• On the hardware where memory protection is enforced by Symbian OS memory management 

the same code will generate a memory exception
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Differences Between the Emulator and Phone Hardware

Symbian has tried to ensure that the Windows emulator 

• Provides as faithful an emulation as possible of Symbian OS running on target hardware. 

• The emulator has processes and thread scheduling that are almost identical to those on real 
Symbian OS phone hardware

However there are some differences 

• For example the memory model for a real phone is different to that of the emulator

The underlying hardware is different

• It is not possible to use the same device driver and hardware abstraction layer code on both 
the emulator and a real phone 

For this reason 

• The emulator cannot be used for low-level programming such as that for device drivers
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Differences Between the Emulator and Phone Hardware

Other differences between the emulator and hardware include the following: 

Bootstrap: 

• On real phones, the first Symbian OS program to run is a bootstrap program

• Which performs various hardware initialization tasks before starting the kernel 

• The emulator does not need to perform these tasks and simply starts the kernel

• The remainder of the boot process is similar on the emulator to the native target

File system support: 

• The emulator can emulate a range of file system and drive types

• But the performance and size of the emulated drives may not be exactly the same as expected for real 
hardware
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Differences Between the Emulator and Phone Hardware

Floating-point behavior: 

• Symbian OS provides access to IEEE-754 single-precision and double-precision floating-point 
values 

• Through the types TReal32 (C++ float type) and TReal64 (C++ double type)

• The emulator is implemented on Intel x86 processors which have floating-point hardware - 
this support is used

• Target hardware may or may not have floating-point hardware support

• Where it does not - the calculations are performed in software

• Thus there may be significant performance differences between emulator and hardware 

versions of the code using floating-point arithmetic
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Differences Between the Emulator and Phone Hardware

Serial ports: 

• The emulator provides emulation of serial ports through Windows serial ports

• This is generally adequate for most purposes but may not provide the same performance as a 
real device

• Some applications have found that high latency times in Windows serial ports have caused 
some communications data to be dropped
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Differences Between the Emulator and Phone Hardware

Timers: 

• The standard timer resolution is 1/64th second on all platforms, including the emulator

• There is also a high-resolution timer accessed through methods such as 
User::AfterHighRes() and RTimer::HighRes()

• This has 1 ms resolution on reference hardware

• Defaults to 5 ms on the emulator

• But it can be changed by setting the timer period (in ms) 

• Through the TimerResolution variable in the epoc.ini configuration file
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Differences Between the Emulator and Phone Hardware

Machine word alignment: 

• The 32-bit RISC architecture used by the phone hardware 

• Requires that 32-bit quantities must be aligned to a 32-bit machine word boundary

• That is their address must be a multiple of four or an access violation will be generated

• This is not the case for code executing on the emulator which will run successfully

80



Tool ChainFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Differences Between the Emulator and Phone Hardware

Pixel sizes: 

• There is a slight difference in the pixel sizes on the Windows emulator and on phone hardware

• Thus text and graphics may be displayed differently on the phone from the way it appears on 
the emulator

USB support: 

• Symbian OS provides USB client support on phone hardware 

• But there is no such support in the emulator
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Emulator File System

The file system of the phone is mapped to the PC as follows:

• The internal writable drive (c:) is usually mapped to \epoc32\ winscw\c

• The ROM is mapped to \epoc32\release\winscw\udeb\z for the debug build

• And \epoc32\release\winscw\udeb\z for the release build

The emulator’s configuration file can be modified 

• To add other virtual drives if necessary

• The standard drives can be mapped to alternative locations as required
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Emulator File System

There is one exception to the file system mapping

• Which is the location of the executables 

On the phone 

• All executables are stored in the \sys\bin directory

On the emulator 

• The executables are loaded from where they are built

• That is the \epoc32\release\wins\udeb or \epoc32\release\wins\urel 
directory
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Emulator File System

The emulator can also be set up 

• So that it behaves as if a removable media card is present

• For example - a Memory Stick or MMC

This can be used to test how an application behaves 

• When reading and writing data to the card

• Or when the card is removed and/or swapped
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Emulator File System

It is possible to emulate 

• A user opening and closing the removable media drive door

• Replacing and removing the media card

• Assigning a password to an emulated card

MMC emulation does not involve access to any kind of hardware interface

• Instead, the memory area of each emulated card is represented by a file

• A .bin type file in the Windows system temp directory

85



Copyright © 2001-2007 Symbian Software Ltd.

Curriculum Check ListFundamentals of Symbian OS

Tool Chain

✓ Build Tools

✓ Hardware Builds

✓ Installing an Application to Phone Hardware

✓ The Symbian OS Emulator
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