
Fundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Two-Phase Construction and Object
Destruction

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Introduction

Symbian OS is designed to perform well on devices with limited memory

• It uses memory-management models such as the cleanup stack to ensure that memory is not
leaked, even under error conditions or in exceptional circumstances, such as when there is
insufficient free memory to complete an allocation

• Two-phase construction is an idiom used extensively in Symbian OS code to provide a means
by which heap-based objects may be constructed fully initialized, even when that initialization
code may leave

2

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Two-Phase Construction and Object Destruction

Two-Phase Construction

‣ Know why code should not leave inside a constructor

‣ Recognize that two-phase construction is used to avoid the accidental creation of objects
with undefined state

‣ Understand that constructors and second-phase ConstructL() methods are given
private or protected access specifiers in classes which use two-phase construction, to
prevent their inadvertent use

‣ Understand how to implement two-phase construction, and how to construct an object
which derives from a base class which also uses a two-phase method of initialization

‣ Know the Symbian OS types (C classes) which typically use two-phase construction

3

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

No code within a C++ constructor should ever leave

Consider this example:

4

class CFoo : public CBase

 {... //Details omitted for clarity

public:

 CFoo(TInt aVal)

 {

 iVal=aVal;

 iBar = new(ELeave) CBar(aVal);
 }

private:

 CBar* iBar;

 };

...

CFoo* foo = new(ELeave) CFoo(42);

• Memory is allocated for foo and its constructor is called

• But what if iBar = new(ELeave) CBar(aVal); in the CFoo constructor leaves?

• Memory has already been allocated for the CFoo object

• Because of the leave there is no valid pointer for the partially-constructed CFoo object

• Without a valid pointer there is no way to clean up the CFoo object

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Two-Phase Construction

Two-phase construction breaks object construction into two parts

1. A basic C++ constructor which cannot leave

• It is this constructor which is called by the new operator.

• It implicitly calls base-class constructors

• It may also invoke functions that cannot leave and/or initialize member variables with default
values or those supplied as arguments to the constructor

5

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Two-Phase Construction

Two-phase construction breaks object construction into two parts

2. A class method (typically called ConstructL())

• This method may be called once the allocated and constructed object has been pushed onto

the cleanup stack

• It completes construction of the object and may safely perform operations that may leave.

• If a leave does occur, the cleanup stack calls the destructor to free any resources that had
already been successfully allocated, and destroys the memory allocated for the object itself

6

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Two-Phase Construction

7

class CFoo : public CBase

 {... //Details omitted for clarity

public:

 CFoo(TInt aVal){iVal=aVal;}

 void ConstructL()
 {
 iBar = new (ELeave) CBar(iVal);
 }

private:

 CBar* iBar;

 };

...

CFoo* foo = new (ELeave)CFoo(42);
CleanupStack::PushL(foo);
foo->ConstructL();
CleanupStack::Pop(foo);

Splitting the construction allows a more atomic approach to handling leaves.

• The memory is allocated for foo and safely placed on the cleanup stack

• The leaving function ConstructL is called separately

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Introducing NewL and NewLC

The previous example can introduce programming errors

• Some callers may forget to call ConstructL() after instantiating the object

after all, it is not a standard C++ requirement for construction

The idiom

• Is best implemented if the class itself makes the call to the second-phase construction function,
rather than the caller

• Obviously the code cannot do this from within the simple constructor, since this takes it back to the
original problem of calling a method which may leave

8

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Introducing NewL and NewLC

The Symbian OS idiom

• Is to provide a static function which wraps both phases of construction

• Providing a simple and easily identifiable means to instantiate objects of a class on the heap.

• The function is typically called NewL()

• A NewLC()function is often provided too and leaves the constructed object on the cleanup stack

for convenience (as discussed previously in the cleanup stack section)

9

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Introducing NewL and NewLC

The NewL()and NewLC functions are static

• Thus they can be called without first having an existing instance of the class

The non-leaving constructors and second-phase ConstructL() functions have
been made private

• A caller cannot instantiate objects of the class except through NewL()/NewLC

• Prevents duplicate calls to ConstructL() after the object has been fully constructed

10

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Example Implementation

• The NewL() function is implemented in terms of the NewLC() function rather than the other way

around (which would be slightly less efficient since this would require an extra PushL() call on the

cleanup stack)

• Note the use of the Symbian OS overload of operator new(ELeave) this implementation will leave if it

fails to allocate the required amount of memory.

• This means that there is no need to check for a NULL pointer after a call to new(ELeave)

11

/*static*/ CFoo* CFoo::NewLC(TInt aVal)

 {

 CFoo*self = new(ELeave) CFoo(aVal); // First-phase construction
 CleanupStack::PushL(self);

 self->ConstructL(aVal); // Second-phase construction
 return self;

 }

/*static*/ CFoo* CFoo::NewL(TInt aVal)

 {

 CFoo* self = CFoo::NewLC(aVal);
 CleanupStack::Pop(this);

 return self;

 }

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Deriving from a Class which uses Two-Phase
Construction

If any class is to be sub-classed

• The default constructor should be made protected rather than private so the compiler can

construct the derived classes

• C++ will ensure that the first-phase constructor of a base class is called prior to calling the derived-class
constructor

Two-phase construction is not part of standard C++ construction

• The second-phase constructor of a base class will not be called automatically when constructing a
derived class

• The second-phase ConstructL() method should be made private if it is not be called by a derived

class, or protected if it does need to be called - document this in your code

12

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Deriving from a Class which uses Two-Phase
Construction

A class intended

• For extension through inheritance which uses the two-phase construction pattern typically
supplies a protected method to do this

• Called BaseConstructL() rather than ConstructL()

The derived class

• Calls this method in its own ConstructL() method to ensure that the base-class object is fully

initialized

13

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Discussion Point: Using PushL in a Constructor

Two-stage construction for a class could be avoided

• By including a CleanupStack::PushL(this) at the start of the class's C++ constructor

• This would achieve the same effect as using ConstructL() (since PushL() will always store

the this pointer safely for later cleanup)

If the class is to be used as a base class

• the constructor of any classes derived from it will incur the overhead of one push and pop in the

constructor called at each level in the inheritance hierarchy

This is less efficient

• Than one pop and push in its own NewLC()

• Better for C++ to automatically initialize the base classes, while the developer manages the
resource allocation of base class objects in the most derived class’s NewLC()

14

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Two-phase construction and Symbian OS types

Two-phase construction is typically used only for C classes

• T classes do not usually require complex construction code as they do not contain heap-based
member data

• R classes are usually created uninitialized requiring their callers to call Connect() or Open
() to associate the R-class object with a particular resource

15

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Two-Phase Construction and Object
Destruction

Object Destruction

‣ Know that it is neither efficient nor necessary to set a pointer to NULL after deleting it in
destructor code

‣ Understand that a destructor must check before dereferencing a pointer in case it is
NULL, but need not check if simply calling delete on that pointer

16

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Object Destruction

When implementing

• The standard Symbian OS two-phase construction idiom it is important to consider the
destructor code carefully

• A destructor must be coded to release all the resources that an object owns

• The destructor may be called to clean up partially constructed objects if a leave occurs in the
second-phase ConstructL() function

The memory for a CBase-derived object

• Is guaranteed to be set to binary zeroes on first construction

• It is safe for a destructor to call delete on a NULL pointer

But ...

17

Two-Phase Construction and Object DestructionFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Object Destruction

The destructor code

• Cannot assume that the object is fully initialized

• Should beware of calling functions on pointers which may not yet be set to point to valid
objects

• Should beware of attempting to free other resources - by dereferencing them - without
checking whether the handle or pointer which refers to them is valid:

18

CExample::~CExample()

 {

 if (iMyAllocatedMember) // iMyAllocatedMember may be NULL

 {

 iMyAllocatedMember->DoSomeCleanupPreDestruction();
 delete iMyAllocatedMember; // No need to set it to NULL

 }

 }

Copyright © 2001-2007 Symbian Software Ltd.

Curriculum Check ListFundamentals of Symbian OS

Two-Phase Construction and Object Destruction

✓ Two-Phase Construction

✓ Object Destruction

19

