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System Structure

This Lecture Examines

• DLLs 

• Memory management

• Threads and processes
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System Structure

A brief high-level overview of Symbian OS:

• It is a multi-tasking operating system based on open standards for advanced mobile phones

The phones 

• Have a sophisticated graphical user interface (GUI) and a number of built-in applications which use it 

For example, messaging and calendar

Is said to be an “open” platform because, in addition to the applications built in by the 
manufacturer

• A user may install others such as games, enterprise applications (for example push e-mail) or utilities
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System Structure

Symbian OS is licensed to the world’s leading handset manufacturers

• Arima, BenQ, Fujitsu, Lenovo, LG Electronics, Motorola, Mitsubishi, Nokia, Panasonic, Samsung, Sharp 
and Sony Ericsson

Symbian OS has a flexible architecture 

• Allowing different user interfaces to run on top of the core operating system 

Symbian OS UIs include

• Nokia’s S60 and Series 80 platforms, NTT DoCoMo’s FOMA user interface and UIQ
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System Structure

EKA1 and EKA2 

• Refer to different versions of the Symbian OS kernel 

• The EKA stands for “EPOC Kernel Architecture” 

(Symbian OS was previously known as “EPOC”, and earlier still “EPOC32”)

• EKA1 is the 32-bit kernel released originally in the Psion Series 5 in 1997

• EKA2 is discussed in the next slide
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System Structure

EKA2 

• Was first introduced in Symbian OS version 8.0b

• But first shipped in a phone product until version 8.1b

• Is found in the Japanese MOAP 2.0 FOMA 902i series phones

• It is the second iteration of Symbian’s 32-bit kernel 

• Very different internally to EKA1 

• Offers hard real-time guarantees to kernel and user-mode threads
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Fundamentals of Symbian OS

DLLs in Symbian OS

‣ Know and understand the characteristics of polymorphic interface and shared library 
(static) DLLs

‣ Know that UID2 values are used to distinguish between static and polymorphic DLLs, and 
between plug-in types

‣ For a shared library, understand which functions must be exported if other binary 
components are to be able to access them

‣ Know that Symbian OS does not allow library lookup by name but only by ordinal

7



System StructureFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Shared Library and Polymorphic Interface DLLs

Dynamic link libraries

• DLLs are libraries of compiled C++ code 

• That may be loaded into a running process

• In the context of an existing thread

There are two main types of DLL

• Shared library (static-interface) DLLs 

• Polymorphic interface (plug-in) DLLs
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Shared Library DLLs

A shared library DLL

• Implements library code that may be used by other libraries or EXEs 

• The filename extension of a shared library is .dll

Examples of this type are

•  The user library EUser.dll 

•  The file system library EFsrv.dll

A shared library 
• Exports API functions according to a module definition (.def) file 

• It may have any number of exported functions

• Each is an entry point into the DLL
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A shared library releases

• A header file (.h) for other components to compile against 

• An import library (.lib) to link against in order to resolve the exported functions

When executable code that uses the library runs

• The Symbian OS loader loads any shared library DLLs that it links to, and any further DLLs 
the shared library DLLs require

• This is done recursively until all shared code needed by the executable is loaded
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A polymorphic interface DLL 

• Implements an abstract interface which is defined separately

For example by a framework 

It may have a .dll filename extension

• But it often uses a different extension to identify the nature of the DLL further

For example 

• .fsy for a file system plug-in 

• .prt for a protocol module plug-in 

• File systems and Sockets are discussed later
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Polymorphic Interface DLLs are used as plug-ins

They have a single entry-point “gate” or “factory” function

• Which instantiates the concrete class that implements the interface

They are used 

• To provide a range of different implementations (plug-ins) of a single consistent 

interface 

They are loaded dynamically

• Typically by a framework
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From Symbian OS v7.0 onward

• The most common type of plug-ins are ECOM plug-ins 

ECOM is a generic framework for specifying interfaces

• And for finding and loading those plug-ins which implement them

Many Symbian OS frameworks require their plug-ins to be written as 
ECOM plug-ins

• Rather than as a “proprietary” type of framework which loads polymorphic interface 
DLL plug-ins

• For example, the recognizer framework 
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Using ECOM allows each framework to delegate the finding and loading of 
suitable plug-ins to ECOM

• Rather than performing that task itself

Thus making easier to design and implement new services or features

• ECOM provide a consistent design pattern 
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UIDs used by DLLs

UIDs are used to identify a file type 

• For running executable code (including DLLs)

• And for associating data files with the appropriate application 

A UID is a 32-bit globally unique identifier value 

Symbian OS uses a combination of up to three UIDs to uniquely 
identify a binary executable 

• The three UID values used by DLLs are as follows ...
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UID1

UID1 is a system-level identifier 

• Distinguishes between EXEs and DLLs

• This value is never stated explicitly 

• It is determined by the Symbian build tools from the targettype specified in 

the MMP file 

For shared libraries 

• The targettype specified should be DLL 

• UID1 = KDynamicLibraryUid = 0x10000079
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UID1 Continued

For polymorphic ECOM plug-in DLLs

• The targettype is PLUGIN 

• or ECOMIIC for versions of Symbian OS earlier than v9.0

Other polymorphic non-ECOM plug-in DLL target types

• FSY (file system plug-in) 

• PRT (protocol module plug-ins). 

• The targettype keyword and the build tools are discussed in later lectures
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UID2

UID2 distinguishes between shared library DLLs and polymorphic interface DLLs

• Shared libraries are always KSharedLibraryUid (0x1000008d)

Polymorphic interface DLLs have UID2 values specific to their type 

• For example the socket server protocol module UID2 value is 0x1000004A
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UID3

UID3 is used to identify a component uniquely

Symbian manages UID allocation through a central database 

• Ensuring the UID is a genuinely unique value 

Developers must be registered with Symbian Signed to request UIDs

• More on Symbian Signed later
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EXEs

The UID1 value is set by the targettype EXE statement to 
(KExecutableImageUid=0x1000007a) 

UID2 is not relevant for an EXE 

• It can be left unspecified 

• Or set explicitly to KNullUid (=0)

UID3 

• on Symbian OS v9 and beyond UID3 should usually be set to a unique 

value to act as the secure identifier for the binary

• Pre-Symbian OS v9 it can be left unspecified
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Exporting Functions from a DLL

A shared library DLL provides access to its APIs by exporting its functions 

• Used by another DLL or by EXE code compiled into a separate binary component 

• Exporting makes the functions “public” to other modules by creating a .lib file

• Libs contain the export table to be linked against by the calling code
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Exporting Functions from a DLL

Functions to be exported

• Should be marked in the class definition in the header file with the macro IMPORT_C

The client code will include the header file 

• effectively “importing” each function into their code module 

• When they call it

The corresponding function implementation

• Should be prefixed with the EXPORT_C macro in the .cpp file which implements it
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Use of IMPORT_C and EXPORT_C:

23

class CMyExample : public CSomeBase

    {

public:

    IMPORT_C static CMyExample* NewL();
public:

    IMPORT_C void Foo();
    ...

    };

EXPORT_C CMyExample* CMyExample::NewL()
    {...}

EXPORT_C void CMyExample::Foo()
    {...}

Exporting Functions from a DLL
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The rules as to which functions should be exported are as follows:

Inline functions must never be exported because there is no need to do so

This is why:

• The IMPORT_C and EXPORT_C macros add functions to the export table to make them 

accessible to components linking against the library 

• But the code of an inline function is already accessible to callers because it is declared within 
the header file 

• So the compiler interprets the inline directive by adding the code directly into the client 

code wherever it calls it.  There is no need to export it.

24
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Only functions that are to be used outside a DLL should be exported by using of 
IMPORT_C and EXPORT_C 

If the function is private to the class 

• It can never be accessed by client code

Exporting it adds it to the export table in the module definition file (.def)
unnecessarily

25
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All virtual functions should be exported

• Whether public, protected or private

• Since they may be re-implemented by a derived class in another code module

Any class which has virtual functions 

• Must also export a constructor 

• Even if it is empty

So that the virtual function table 

• Can be correctly generated by access to the base-class constructor

26
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Lookup by Ordinal and by Name

The size of DLL program code is optimized 

• To save ROM and RAM space

In most operating systems to load a dynamic library the entry points of a DLL can 
either be:

• Identified by string-matching their name - lookup by name

• Or by the order in which they are exported in the module definition file - lookup by ordinal

Symbian OS does not offer lookup by name

• As it adds an overhead to the size of the DLL 

• Storing the names of all the functions exported from the library is wasteful of limited ROM and RAM 
space
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Symbian OS only uses link by ordinal

• This has significant implications for binary compatibility

• Ordinals must not be changed between one release of a DLL and another

For example

• Code which links against a library and uses an exported function with a specific ordinal 
number in an early version of the library 

• Will not be able to call that function in a newer version of the library if the ordinal number is 
changed

Binary compatibility is discussed further in a later lecture
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Note

The one type of virtual function which should NOT be exported from a DLL is a 
pure virtual function

• As there is generally no implementation code for a pure virtual function

• So there is no code to export
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Fundamentals of Symbian OS

 Writable Static Data

‣ Recognize that writable static data is not allowed in DLLs on EKA1 and discouraged on 
EKA2

‣ Know the basic porting strategies for removing writable static data from DLLs
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Support for Writable Static Data

Symbian OS supports global writable static data in EXEs 

• On all versions and handsets

In versions of Symbian OS which contain EKA1 (Symbian OS versions 8.1a, 8.0a 
or earlier)

• Writable static data cannot be used in DLLs

• This is because DLLs have separate areas for program code and read-only data 

But do not have an area for writable data
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Versions of Symbian OS which Support Writable 
Static Data in DLLs

Versions of Symbian OS which contain EKA2 (Symbian OS versions 8.0b, 
8.1b, 9.0 and beyond) 

• Now support the use of writable static data in DLLs 

But it is still not recommended

• As it is expensive in terms of memory usage 

• And has limited support in the Symbian OS Emulator 

Symbian recommends that it only be used as a last resort 

• e.g. when porting code written for other platforms which uses writable static data 
heavily
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Writable Static Data in GUI applications

On EKA1 

• All GUI applications were built as DLLs 

• No application code could use writable static or global data

On EKA2

• Applications are now built as EXEs, so this is no longer an issue

• Modifiable global or static data has always been allowed in EXEs

33
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Symbian OS platform 
version

Writable static data in DLLs built for 
hardware

Application binary type

v6.1 — v8.0a 
(inclusive), v8.1a
(EKA1)

Not supported on hardware builds 
(compilation will fail)

DLL — no writable static data 
allowed

v8.0b, v8.1b, v9.0 and 
beyond
(EKA2(

Supported but not recommended — 
limited emulator support and 
inefficient in terms of memory usage

EXE — writable static data can be 
used

Versions of Symbian OS which Support Writable 
Static Data in DLLs
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In order to enable global writable static data on EKA2 

• The EPOCALLOWDLLDATA keyword must be added to the MMP file of a DLL 

• Where this is not used and on EKA1 versions of the Symbian OS

• The tool chain will return an error when the DLL code is built for the phone hardware

35

How to Enable Writable Static Data in DLLs
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Workarounds to Avoid Writable Static Data in DLLs

1.   Thread-local storage

• One workaround used to replace writable static data is called thread-local storage (TLS)

This can be accessed through 

• Class Dll on pre-8.1b versions of Symbian OS 

• Class UserSvr for version 8.1b and version 9.0.

Thread-local storage is a 32-bit pointer

• Specific to each thread that can be used to refer to an object which simulates global writable static data 

• All the global data must be grouped within this single object

• And allocated on the heap when the thread is created
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Functions Dll::SetTls() or UserSvr::DllSetTls()

• Are used to save the pointer to the object 

• To the thread-local storage pointer

Functions Dll::Tls() or UserSvr::DllTls()

• Are used to access the global data

On destruction of the thread

• The data is destroyed too

37
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2.   Client–server framework

• Symbian OS supports writable global static data in EXEs

A common porting strategy is to wrap the code in a Symbian server 

• Which is an EXE

• Exposing its API as a client interface

38
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3.   Embed global variables into classes

• With small amounts of code it may be possible to move most global data inside classes

• The data can then be passed as function parameters between objects and functions

39
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Writable Static Data Defined

Global writable static data is any per-process modifiable variable 

• Which exists for the lifetime of the process 

In practice this means any globally scoped data declared outside of

• A function 

• A struct or class 

• Function-scoped static variables
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Writable Static Data Defined

The only global data that can be used within DLLs is 

• constant global data of the built-in types

• Or of a class with no constructor

So these definitions are acceptable:

41

static const TUid KUidFooDll = { 0xF000C001 };

static const TInt KMinimumPasswordLength = 6;
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Writable Static Data Defined

The following definitions cannot be used because they have non-trivial class 
constructors

• That is, the objects must be constructed at run-time

42

static const TPoint KGlobalStartingPoint(50, 50);

static const TChar KExclamation(’!’);

// The following literal type is deprecated

static const TPtrC KDefaultInput =_L("");



System StructureFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Writable Static Data Defined

The memory for the object is pre-allocated in code  but it does not actually 
become initialized and constant 

• until after the constructor has run

Thus at build time, each constitutes a non-constant global object 

• Causes the build to fail for phone hardware, unless the EPOCALLOWDLLDATA keyword has 

been added to the MMP file of the DLL
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Writable Static Data Defined

The following object is also non-constant 

• Although the data pointed to by ptr is constant

• The pointer itself is not constant:

• This can be corrected by making the pointer constant 

44

// Writable static data!

static const TText* ptr = (const TText*)"data";

static const TText* const ptr = (const TText*)"data";
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Note

On EKA1

• The emulator can use the underlying Windows DLL mechanism to provide per-process DLL 
data 

• If non-constant global data is used inadvertently - it will go undetected in emulator builds 

• It will only fail when the PETRAN tool encounters it in the hardware platform build
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Fundamentals of Symbian OS

  Executables in ROM and RAM

‣ Recognize the correctness of basic statements about Symbian OS execution of DLLs and 
EXEs in ROM and RAM
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EXEs in ROM and RAM

On target hardware 

• Executable code can either be built onto the phone in read-only memory (ROM) when the 
phone is in the factory

• Or can be later installed on the phone either into the phone’s internal memory or onto 

removable storage media such as a memory stick or MMC

ROM-based EXEs

• Can be thought of as executing directly in place from the ROM

• This means that program code and read-only data (such as literal descriptors) are read directly 
from the ROM

• The component is only allocated a separate data area in RAM for its read/write data.
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EXEs in ROM and RAM

If an EXE is installed (rather than built into the ROM)

• It executes entirely from RAM 

• It has an area allocated for program code and read-only static data 

• A separate area for read/write static data

If a second copy of the EXE is launched 

• The read-only area is shared

• A new area of read/write data is allocated.
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DLLs in ROM and RAM

DLLs in ROM 

• Are not loaded into memory

• Execute in place in ROM at their fixed address 

DLLs running from RAM 

• Are loaded at a particular address 

• The address is determined only at load time

Reference counting is used

• Allowing the DLLs to be unloaded only when they are no longer being used by any component 
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DLLs in ROM and RAM

Loading a DLL from RAM

• Is different from simply storing it on the internal (RAM) drive 

Symbian OS 

• Copies it into the area of RAM reserved for program code 

• Preparing it for execution by fixing up the relocation information
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DLLs in ROM and RAM

DLLs that execute from ROM are fixed at an address 

• Thus do not need to be relocated

To compact the DLL 

• In order to occupy less ROM space 

• Symbian OS tools strip the relocation information out when a ROM is 
built 

The lack of relocation information means that a DLL cannot 
be copied from the ROM 

• then stored and executed from RAM
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DLLs in ROM and RAM

For both types of DLL (shared library and polymorphic interface plug-in)

• The code section is shared

If multiple threads or processes use a DLL simultaneously 

• The same copy of program code is accessed 

• At the same location in memory

Subsequently loaded processes or libraries that wish to use the DLL

• Are fixed up by the DLL loader to use the same copy
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Fundamentals of Symbian OS

Threads and Processes

‣ Recognize the correctness of basic statements about threads and processes on Symbian 
OS

‣ Recognize the role and the characteristics of the synchronization primitives RMutex, 
RCriticalSection and RSemaphore
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Threads

Threads

• Are the basic unit of execution

• Form the basis of multitasking - allowing multiple sequences of code to execute 
simultaneously (or appear to do so)

It is possible to create multiple threads in a Symbian OS application for parallel 
execution

But in many cases 

• It is more appropriate to use active objects 

• Since these are optimized for event-driven multi-tasking on Symbian OS
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The class used to manipulate threads is RThread

• An object of type RThread represents a handle to a thread 

• The thread itself is a kernel object 

Threads

55

RThread

RHandleBase
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Threads

The base class of RThread is RHandleBase 

• Which encapsulates the behavior of a generic handle 

• RHandleBase used as a base class throughout Symbian OS 

• To identify a handle to another object

• Often a kernel object

Class RThread defines several functions for thread creation

Threads are not contained in separate executable files 

• But execute within a parent process executable

• Each thread has an independent execution stream
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The RThread::Create() Function

This is one RThread::Create() method (there are a number of overloads):

Each thread-creation function 

• Takes a descriptor representing a unique name for the new thread 

• A pointer to a function in which thread execution starts

• A pointer to data to be passed to that function

• A value for the stack size of the thread, which defaults to 8 KB. 

57

TInt Create(const TDesC &aName, 
TThreadFunction aFunction,
TInt aStackSize, 
TInt aHeapMinSize, 

TInt aHeapMaxSize, 

TAny *aPtr, 
TOwnerType aType=EOwnerProcess)
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Thread Creation

A thread is created 

• In the suspended state 

• Its execution started by a call to RThread::Resume() 

The Create() function
• Is overloaded to offer various options associated with the thread heap

Such as

• Its maximum and minimum size 

• Whether it shares the creating thread’s heap or uses a specific heap within the process in 
which it runs
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Thread Heaps

By default, each Symbian OS thread 

• Has its own independent heap as well as its own stack

• The size of the stack is limited to the size set in RThread::Create()

The heap can grow from its minimum size up to a maximum size

When the thread has its own heap 

• The stack and the heap are located in the same chunk of memory
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Thread Identification

When the thread is created the system assigns it a unique thread identity

• Returned by the Id() function of RThread as a TThreadId object

If the TThreadId value of an existing thread is known

• It can be passed to RThread::Open()

• To open a handle to that thread

Alternatively

• The unique name of a thread can be passed to open a handle to it
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Thread Scheduling

Threads are pre-emptively scheduled 

• The currently running thread is the highest-priority thread ready to run

If there are two or more threads with equal priority 

• They are time-sliced on a round-robin basis

The priority of a thread is a number

• The higher the value - the higher the priority

A running thread can be removed 

• By a call to Suspend() on the thread handle

• Can be scheduled to run again by another call to Resume()
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Thread Termination

A thread can be ended permanently 

• By a call to Kill(TInt aReason) or Terminate(TInt aReason) 

• aReason represents the exit reason 

• These methods should be used to stop a thread normally 

• For stopping the thread to highlight a programming error Panic() is used

On EKA1
• A thread must call SetProtected() 

• To prevent other process threads from acquiring a handle to it 

• And killing it by making a call to Suspend(), Panic(), Kill() or Terminate()
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Thread Security

On EKA2 the security model ensures 

• The thread is always protected from threads running in other processes

• The redundant SetProtected() method has been removed

• A thread cannot stop another thread in a different process

The functions

• Suspend(), Terminate(), Kill() or Panic()  

• Are still retained in EKA2 

• A thread can still use these functions on itself 

• Or other threads in the same process 

but not on threads in a different process

It is also still possible 

• For a server to panic a misbehaving client thread 

• By calling RMessagePtr2::Panic()
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Thread Termination

If the main thread in a process

• Is ended by any of the termination methods

• Suspend(), Terminate(), Kill() or Panic()  
• The process also terminates

If a secondary thread

• That is created by a call to RThread::Create()from with in the process

• The thread terminates 

• The process itself does not stop running

64



System StructureFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Thread Death Notification

To receive notification when a thread dies

• Submit a request for notification of thread termination 

• By a call to RThread::Logon(TRequestStatus &aStatus) 

• The TRequestStatus is a completion semaphore

The request completes when the thread terminates

• aStatus contains the value with which the thread ended

If the notification request was cancelled 

• By a call to RThread::LogonCancel()

• aStatus will contain KErrCancel
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Thread Termination

The thread handle class also provides functions to give full details of the associated 
thread’s end state 

TExitType RThread::ExitType()

• Allows the caller to distinguish between normal termination and a panic

TInt RThread::ExitReason()

• Gets the specific reason associated with the end of this thread  

TExitCategoryName RThread::ExitCategory()

• Gets the name of the category associated with the end of the thread
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Thread Notification

A thread rendezvous request can also be created

• To allow correct order synchronization e.g. data manipulation 

• By calling the asynchronous RThread::Rendezvous() 

The request completes in any of the following ways:

• When the thread next calls RThread::Rendezvous(TInt aReason) 

• If the outstanding request is cancelled by a call to 
RThread::RendezvousCancel()

• If the thread exits or panics 
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Kernel Objects for Synchronization

Besides the use of RThread::Rendezvous(), Symbian OS 

provides several classes representing kernel objects for thread 
synchronization

• A semaphore 

• A mutex

• A critical section
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Semaphores

A semaphore 

• Can be used either for sending a signal from one thread to another

• Or for protecting a shared resource from being accessed by multiple threads at the same 
time 

A semaphore is created and accessed 

• with a handle class called RSemaphore

A global semaphore

• Can be created, opened and used by any process in the system

A local semaphore 

• Can be restricted to all threads within a single process 
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Semaphore

Semaphores can be used 

• To limit concurrent access to a shared resource 

• Either to a single thread at a time 

• Or multiple accesses up to a specified limit
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Mutexes

A mutex 

• Is used to protect a shared resource 

• So that it can only be accessed by one thread at a time

• The RMutex class is used to create and access global and local mutexes
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Critical Sections

A critical section 

• Is a region of code that should not be entered simultaneously by multiple threads 

An example is code that manipulates global static data 

• Since it could cause problems if multiple threads change the data simultaneously
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The RCriticalSection class 

The RCriticalSection class 

• Allows only one thread within the process into the controlled section

• Forces other threads attempting to gain access to that critical section to wait until the first 
thread has exited from the critical section

RCriticalSection objects 

• Are always local to a process

A critical section cannot be used to control access to a resource shared by 
threads across different processes

• A mutex or semaphore should be used instead
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Processes
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Note 

75

A note on User-side or User-mode operations

• User-side operations dealt with by EUser.dll

• Which calls system or kernel functions for the user-side component

• Kernel functions sometimes referred privileged mode

For mode in-depth information on the Symbian OS kernel and memory 
management please see:

• Smartphone Operating System Concepts with Symbian OS

• By Michael J. Jipping

• ISBN 978-0-470-03449-1
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Processes

A Symbian OS process 

• Is an executable that has its own data area, stack and heap 

• By default a process is given 8 KB of stack and 1 MB of heap

• Sometimes referred to as a unit of protection 
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Processes

Many processes can be active on Symbian OS at once

• Including multiple instances of the same process

• Processes have private address spaces

• A user-side process cannot directly access memory belonging to another user-side 
process

By default

• A process contains a single execution thread - the main thread

• Additional threads can be created as described above
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Processes

A context switch occurs when switching from one thread to another

• Context switches occur whenever a thread is scheduled to run and becomes active

Switching between threads 

• in different processes is more “expensive” than switching between threads within the same 
process

A  process context switch 

• Requires that the data areas of the two processes be remapped by the memory management 
unit (MMU).
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Processes
The class used to manipulate processes is RProcess

The RProcess::Create() function 

• Can be used to start a new named process

The RProcess::Open() function 

• Can be used to open a handle to a process 

• Identified by name or process identity (TProcessId) 
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Processes

There are assorted functions to stop the process 

• Similar to RThread 

The Resume() function

• Marks the first thread in the process as eligible for execution

Note that there is no RProcess::Suspend() function

• As processes are not scheduled

• Threads form the basic unit of execution and run inside the protected address 
space of a process
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Processes

On Windows

• The emulator runs within a single Win32 process called EPOC.exe

• Each Symbian OS process runs as a separate thread inside it

On EKA1

• The emulation of processes on Windows is incomplete 

• RProcess::Create() returns KErrNotFound 

On EKA2 

• This has been removed 

• Symbian OS still runs in a single process 

• But the emulation is enhanced ...

• RProcess::Create() translates to creation of a new Win32 thread 
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Curriculum Check ListFundamentals of Symbian OS

System Structure: Part One

✓ DLLs in Symbian OS

✓ Writable Static Data

✓ Executables in ROM and RAM

✓ Threads and Processes
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System Structure

This Lecture Examines

• Inter-process communication (IPC)

• Recognizers

• Panics and assertions
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Fundamentals of Symbian OS

Inter-Process Communication (IPC)

‣ Recognize the preferred mechanisms for IPC on Symbian OS (client–server, publish and 
subscribe and message queues), and demonstrate awareness of which mechanism is most 
appropriate for given scenarios

‣ Understand the use of publish and subscribe to retrieve and subscribe to changes in 
system-wide properties, including the role of platform security in protecting properties 
against malicious manipulation
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Client-Server

The Client–Server framework

• Is a common form of inter-process communication (IPC) on Symbian OS

• The client–server framework will be discussed in detail in a later lecture

Clients connect to servers

• To establish a session for all further communication 

• A session consists of client requests and server responses mediated by the kernel

Session-based communication 

• Ensures that all clients will be notified in the case of an error or shutdown of a server

• All server resources will be cleaned up if an error occur 

• Or when a client disconnects or dies

86



System StructureFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Client-Server
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Do not worry about the details now as client-server architecture shall be 
examined in a later lecture

DSessionCSession2

CServer2

RServer2 DServer

user-side kernel-side

client server
mediated by the kernelsession based clients can have more 

than one session
serializes requests
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The client-server communication paradigm 

• Is used for many clients requiring reliable concurrent access to a service or shared 
resource

• The server serializes and mediates access to the service accordingly

There are some limitations:

• Clients must know which server provides the service they need

• A permanent session must be maintained between client and server

• It is not really suitable for event multicasting

(Server-initiated “broadcast” to multiple clients)
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Inter-Process Communication (IPC)

In order to overcome such limitations 

• Symbian OS version 8.0 was extended 

To offer additional IPC mechanisms: 

• Publish and subscribe 

• Message queues 

• Shared buffer I/O 

Publish and subscribe and message queues 

• Are described in this lecture
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Inter-Process Communication (IPC)

Shared buffer I/O 

• Is not discussed because it is intended primarily for device driver developers 

It is used 

• To allow a device driver and its clients to access the same memory area 

• Without copying even during interrupt handling
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The publish and subscribe mechanism 

• Provides asynchronous multicast event notification

• Connectionless communication between threads

Publish and subscribe

• Provides a means to define and publish changes to system-wide global variables known as 
“properties”

Changes to the properties 

• Can be communicated (“published”) to more than one interested (“subscribed”) peer 
asynchronously

Publishers and subscribers 

• Can dynamically join and leave without any connection set-up or tear-down
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Subscriber

Publisher Subscriber

Publisher

Properties

P1

Publisher/
Subscriber

user-sideuser-side kernel-side

Get

Get

Get

Set

Set

P2

P3

Publish & Subscribe
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Publish and Subscribe

Properties are data values 

• Uniquely identified by a 64-bit integer

• Which is the only information that must be shared between a publisher and a subscriber 
(typically through a common header file) 

• There is no need to provide interface classes or functions for a property

Subscribers 

• Do not need to know which component is publishing to a property 

They only need to know:

• About the publish and subscribe API

• The identity of the property of interest to them
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Publish and Subscribe

The publish and subscribe API

•  Is supplied by the RProperty class

The identity of a property is composed of two parts:

• A category - defined by a standard UID which specifies the category to which the property belongs

• A key - which uniquely identifies a property within a particular category

• Its value depends on how keys within the category are enumerated
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A property holds a single data variable which may be either

• A 32-bit integer 

A byte array (a descriptor) of 

• Up to 512 bytes in length 

• Unicode text (also up to 512 bytes in size) 

• Or even large byte arrays of up to 65 536 bytes.

A thread may take the role

• Of either the publisher or the subscriber
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Any thread can define a property

• By calling RProperty::Define() to create the variable 

• And specify its type and access controls

Once a property has been defined

• It will persist in the kernel until it is deleted explicitly or the system reboots

• The property’s lifetime is not linked to that of the defining thread or process
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Properties can be published or retrieved 

• Using a previously attached handle 

• Or by specifying the property’s identity for each call

On EKA2

• The benefit of attaching to an existing handle is that it has a deterministic bounded 
execution time

• This makes it suitable for high-priority real-time tasks
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Publish and Subscribe

A property is published 

• By calling RProperty::Set()

• This writes a new value “atomically” to the property

• Ensuring that access by multiple threads is handled correctly

When a property is published

• All outstanding subscriptions are completed 

• Even if the value is actually unchanged

• This allows the property to be used as a simple broadcast notification
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Publish and Subscribe

To subscribe to a property

• A client must register interest by attaching to it 

• Calling the asynchronous RProperty::Subscribe() method 
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Publish and Subscribe

Notification happens in the following stages:

1. A client registers its interest in the property 

By attaching to it RProperty::Attach() - and calling Subscribe() on the resulting handle passing in 

a TRequestStatus reference

2. Upon publication of a new value the client gets notified via a signal to the TRequestStatus object to 

complete the Subscribe() request

3. The client retrieves the value of the updated property by calling RProperty::Get()

4. The client can re-submit a request for notification of changes to the property by calling Subscribe() again
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Publish and Subscribe

It is not necessary for a property to be defined 

• Before it is accessed 

• This is known as “lazy definition”

It is not a programming error 

• for a property to be published before it has been defined

• This is known as “speculative publishing”

Attaching to an undefined property is not necessarily an error
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Publish and Subscribe

A Subscribe() request on an undefined property will not complete until either:

• The property is defined and published 

• Or the subscriber unsubscribes by canceling the request using RProperty::Cancel()
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Publish and Subscribe

Publish and subscribe is used when a component needs to supply or 
consume timely and transient information

• To or from an unknown number and type of interested parties

• While remaining decoupled from them

A typical example

• Is the notification of a change to the device’s radio states 

For example

• Flight-mode

• Bluetooth radio on/off 

• WiFi on/off
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Publish and Subscribe and Platform Security

On the secure platform of Symbian OS v9

• To ensure that processes are partitioned so that one process cannot interfere with the 
property of another process

• The category UID of the property should match the secure identifier of the defining process

Alternatively

• The process calling RProperty::Define() must have WriteDeviceData capability 

Properties must also be defined 

• With security policies using TSecurityPolicy objects
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Publish and Subscribe and Platform Security

For processes to publish the property value, the following are required

• The capabilities

• (And/or) vendor identifier 

• (And/or) secure identifier

For processes to subscribe to the property the following are required

• The capabilities 

• (And/or) vendor identifier 

• (And/or) secure identifier 

More on Platform Security and capabilities in a later lecture
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Publish and Subscribe and Platform Security

For example

• Before accepting a subscription to a property 

• The security policy defined when the property was created is checked 

• The subscription request completes with KErrPermissionDenied if the check fails
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Message Queues

In contrast to the connection-oriented nature of client–server IPC

• Message queues (RMsgQueue) offer a peer-to-peer, many-to-many communication mechanism

Message queues 

• Provide a way to send data (messages) to interested parties 

• Without needing to know whether any thread is listening 

• Or the identity of a recipient

Messages are sent 

• To the queue rather than to any specific recipient 

• A single queue can be shared by many readers and writers
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Msg Q Handle DMsgQueue

The queue

Msg Q Handle

Message Queues
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user-side kernel-side

Thread 1 Thread 2 Thread 3

Msg Q Handle 1

Msg Q Handle 2
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Message Queues

A message 

• Is an object that is placed into a queue for delivery to recipients 

• A queue is normally created for messages of a given type 

A queue 

• Is created to deal with messages of a defined (fixed) length

• Which must be a multiple of four bytes
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Message Queues

The size of a queue 

• i.e. the maximum number of messages or slots it can contain 

• Is fixed when the queue is created 

The maximum size of the message and of the queue

• Are limited only by system resources
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Message Queues

A message queue 

• Allows two or more threads to communicate without setting up a connection to each other

 A message queue is a mechanism for passing data:

• Between threads that run in separate processes (using a global queue which is named and 
visible to other processes)

• Between threads within a process using a local queue which is not visible to other processes ...

Within a process

• The messages can point to memory mapped to that process and can be used for passing 
descriptors and pointers between threads
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Message Queues

Message queues allow 

• For “fire-and-forget” IPC from senders to recipients 

• Lend themselves well to event notification

Publish and subscribe 

• Is good for notification of state changes which are inherently transient

Message queues 

• Are useful for allowing information to be communicated beyond the lifetime of the sender
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Message Queues

An a good example of using message queues: 

• A central logging subsystem can use a message queue to receive messages from numerous threads 

• That may or may not still be running at the point the messages are read and processed

However 

• Neither messages nor queues are persistent

• They are cleaned up when the last handle to the queue is closed
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Fundamentals of Symbian OS

Recognizers

‣ Recognize correct statements about the role of recognizers in Symbian OS
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Recognizers

Recognizers 

• Are a good example of the use of framework plug-in DLLs

• The framework which loads the recognizers is provided by the application architecture server 
(Apparc)

Up to Symbian OS v9.1 

• Apparc implemented its own custom loading of recognizer plug-ins

In later releases it has been modified to use ECOM
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Recognizers

When a file in the file system needs to be associated with an application 

• Apparc opens the file and reads some data from the start of it into a buffer

• It then calls DoRecognizeL() on each recognizer in the system in turn

• Passing in the data it read into the buffer 

• If a plug-in “recognizes” it it returns its data type (MIME type)

Recognizers do not handle the data 

• They just try to identify its type

• So that the data can be passed to the application that can best use it
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Recognizers

The plug-in recognizer architecture 

• Allows developers to create additional data recognizers 

• Adding them to the system by installing them

All data recognizers 

• Must implement the polymorphic interface defined by CApaDataRecognizerType

• Which has three virtual functions ...
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DoRecognizeL()

DoRecognizeL()

• Performs data recognition

• This function is not pure virtual but must be implemented 

Each implementation 

• Should set a value to indicate the MIME type it considers the data to belong to

And a value to indicate a level of confidence ranging from: 

• ECertain - the data is definitely of a specific data type 

• ENotRecognized - the data is not recognized
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SupportedDataTypeL()

SupportedDataTypeL() 

• Returns the MIME types that the recognizer is capable of recognizing 

• This pure virtual function must be implemented by all recognizer plug-ins

Each recognizer’s implementation of SupportedDataTypeL() 

• Is called by the recognizer framework 

• After all the recognizers in the system have been loaded 

• To build up a list of all the types the system can recognize
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PreferredBufSize()

PreferredBufSize()  

• Specifies the size in bytes of the buffer passed to DoRecognizeL() 

• That the recognizer needs to work with

• This function is not pure virtual but must be implemented
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Fundamentals of Symbian OS

Panics and Assertions

‣ Know the type of parameters to pass to User::Panic() and understand how to make 
them meaningful

‣ Understand the use of __ASSERT_DEBUG statements to detect programming errors in 
debug code by breaking the flow of code execution using a panic

‣ Recognize that __ASSERT_ALWAYS should be used more sparingly because it will test 
statements in released code too and cause code to panic if the assertion fails
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Panics

When a thread is panicked 

• It stops running 

Panics are used

• To highlight a programming error in the most noticeable way 

• By stopping the thread to ensure that the code is fixed

• Rather than potentially causing serious problems by continuing to run

There is no recovery from a panic

• Unlike a leave - a panic can’t be trapped

• A panic is terminal
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Panics

If a panic occurs in the main thread of a process

• The entire process in which the thread runs will terminate 

If a panic occurs in a secondary thread

• It is only that thread which closes 

If a thread is deemed to be a system thread

• That is - essential for the system to run 

• A panic in that thread will reboot the phone

This is very rare 

• Since the code running in system threads on Symbian OS is mature and well-tested
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Panics

On phone hardware 

• And in release builds on the Windows emulator 

• The end result of a panic is either a reboot or an “Application closed” message box

In debug emulator builds 

• A panic can be set to break into the debugger 

• Known as “just-in-time” debugging

The developer can use the debugger 

• To look through the call stack to see where the panic arose 

• Thus to examine the state of appropriate objects and variables
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Panics

A call to the static function User::Panic()

• Panics the currently running thread 

On EKA2

• A thread may panic any other thread in the same process 

• By acquiring an RThread handle and using it to call RThread::Panic() 

On EKA1 

• This function could be used to panic any unprotected thread in any process

• This was deemed insecure for EKA2 
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Panics

The only occasion for EKA2 ...

• Where a thread running inside a user process can panic another thread in a different process 

Is for a server thread to panic a badly-behaved client

• By using the RMessagePtr2::Panic() method
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Panics

User::Panic() and RThread::Panic() take two parameters: 

• A panic category string 

• An integer error code which can be any value, positive, zero or negative. 

Without breaking into the debugger 

• These values should still be sufficient for a developer to determine the cause of a panic
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Panics

The panic string 

• Should be short and descriptive for a programmer rather than for a user - since the user 
should never see them

Panics should only be used as a means to eliminate programming errors during 
the development cycle

• For example by using them in assertion statements 

• Panicking cannot be seen as useful functionality for properly debugged software
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Panics

The following is a very bad example of the use of a panic to indicate a problem to a user:

The following is a good example of the use of a panic

• To highlight a programming error to a developer calling a function in class Bar of the Foo library, and 
passing in invalid arguments 

• The developer can determine which method is called incorrectly and fix the problem:
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_LIT(KTryDifferentMMC, "File was not found, try selecting another");

User::Panic(KTryDifferentMMC, KErrNotFound); // Not helpful!

_LIT(KFooDllBarAPI, "Foo.dll, Bar::ConstructL")

User::Panic(KFooDllBarAPI, KErrArgument);
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Panics

Symbian OS 

• Has a series of well-documented panic categories for example: 

• KERN-EXEC 

• E32USER-CBASE

• ALLOC

• USER

• And associated error values

The details of which can be found in the Symbian OS Library which 
accompanies each SDK
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Assertions

Assertions are used 

• To check that assumptions made about code are correct 

• For example - the states of objects, function parameters or return values are as expected 

Typically 

• An assertion evaluates a statement

• If it is false it halts execution of the code

There is an assertion macro for debug builds only 

• __ASSERT_DEBUG 

For both debug and release builds 

• __ASSERT_ALWAYS
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Assertions

The assertion macro tests a statement 

• If it evaluates to false it calls the method specified in the second parameter passed to the 
macro 

The method is not hard-coded to be a panic

• But rather than return an error or leave it should always terminate the running code and 
flag up the failure

• Panics are the best choice 
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Assertions

Assertions help the detection

• Of invalid states or bad program logic so that code can be fixed

It makes sense to stop the code at the point of error

• Rather than return an error as it is easier to track down the bug
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Assertions

The use of assertions in release builds of code should be considered carefully

• Assertion statements have a cost in terms of size and speed 

• If the assertion fails - it will cause code to terminate with a panic

• Resulting in a poor user experience
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Assertions

This is one example of how to use the debug assertion macro:
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void CTestClass::EatPies(TInt aCount)
    {

    #ifdef _DEBUG

    _LIT(KMyPanicDescriptor, "CTestClass::EatPies");
    #endif

    __ASSERT_DEBUG((aCount>=0),
            User::Panic(KMyPanicDescriptor, KErrArgument));
    ... // Use aCount

    }
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Assertions
It is more common for a class or code module to define: 

• A panic function

• A panic category string 

• A set of specific panic enumerators

For example 

• The following enumeration could be added to CTestClass

• So as not to pollute the global namespace
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enum TTestClassPanic
    {

    EEatPiesInvalidArgument, // Invalid argument passed to EatPies()
    ...                      // Enum values for assertions 

                             // in other CTestClass methods

    };
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Assertions
A panic function is defined either

• As a member of the class 

• Or as a static function within the file containing the implementation of the class:

• The assertion in EatPies() can then be written as follows:
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static void CTestClass::Panic(TInt aCategory)
    {

    _LIT(KTestClassPanic, "CTestClass");

    User::Panic(KTestClassPanic, aCategory);

    }

void CTestClass::EatPies(TInt aCount)

    {

    __ASSERT_DEBUG((aCount>=0), Panic(EEatPiesInvalidArgument));
    ... // Use aCount

    }



System StructureFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Assertions

The advantage of using an identifiable panic descriptor and 
enumerated values for different assertion conditions 

• Is traceability 

This is particularly useful for calling code using a given library

• The developer may not have access to the library source code 

• Only access to the header files 
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Assertions

If the panic string is clear and unique

• A developer should be able to locate the class which raised the panic 

• Use the panic category enumeration to find the associated failure

• Which is named and documented to explain clearly why the assertion failed
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Assertions

Code with side effects 

• Should not be called within assertion statements

The code may well behave as expected in debug mode

• But in release builds the assertion statements are removed by the preprocessor

• With them potentially vital steps in the programming logic
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Assertions

Rather than use the “condensed” statements

• Statements should be evaluated independently 

• With their returned values then passed into the assertion macros
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// Bad use of assertions!

__ASSERT_DEBUG(FunctionReturningTrue(), Panic(EUnexpectedReturnValue));

__ASSERT_DEBUG(++index<=KMaxValue, Panic(EInvalidIndex));
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Panics, Assertions and Leaves

Leaves 

• May legitimately occur under exceptional conditions 

Such as: 

• Out of memory

• Insufficient disk space 

• Or the absence of a communications link

It is not possible 

• To stop a leave from occurring

• Code should implement a graceful recovery strategy 

• Always catch leaves using TRAP statements
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Panics, Assertions and Leaves

Programming errors (“bugs”) can be caused by: 

• Contradictory assumptions

• Unexpected design errors 

• Genuine implementation errors 

These are persistent and unrecoverable errors 

• Which should be detected and corrected by the programmer 

• Rather than handled at run-time

The mechanism to do this

• Is to use assertion statements

These terminate the flow of execution of code if an error is detected, 
using a panic

• Panics cannot be caught and handled gracefully

• The programmer has to fix the problem
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Curriculum Check ListFundamentals of Symbian OS

System Structure : Part Two

✓ Inter-Process Communication (IPC)

✓ Recognizers

✓ Panics and Assertions
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