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File Server and Streams

This Lecture Examines

• The file system server

• Streams and stores
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File Server and Streams

The File system server 

• Known simply as the file server

• Handles all aspects of managing files and directories 

• Provides a consistent interface across the ROM, RAM, Flash memory and removable-media 
devices

• The file server runs as a process EFILE.EXE 

• The client-side implementation classes supplied by EFSRV.DLL
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File Server and Streams

As the file server contains the loader

• That loads executable files (DLLs and EXEs) from the data-caged \sys\bin 

directory

• The file server is part of the trusted computer base (TCB)

• More on Platform Security in a later lecture
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Fundamentals of Symbian OS

The Symbian OS File System

‣ Understand the role of the file server in the system

‣ Know the basic functionality offered by class RFs

‣ Recognize code which correctly opens a fileserver session (RFs) and a file subsession 
(RFile) and reads from and writes to the file

‣ Know the characteristics of the four RFile API methods which open a file

‣ Understand how TParse can be used to manipulate and query file names
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File Server Session Class

The file server provides

• The basic services that allow calling code to manipulate drives, directories and 
files 

In order to use the file server 

• A caller must first create a file server session 

• Represented by an instance of the RFs class

The general pattern 

• For connecting to the file server is using the RFS session

• To create and use an RFile subsession 

• Then releasing both the session and subsession

• As demonstrated in the following code example
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File Server Session Class
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RFs fs;
User::LeaveIfError(fs.Connect());
CleanupClosePushL(fs);

...

_LIT(KASDExampleIni, "c:\\ASDExample.ini");

RFile file; 
User::LeaveIfError(file.Create(fs, KASDExampleIni,
          EFileRead|EFileWrite|EFileShareExclusive));
CleanupClosePushL(file); 

TBuf8<32> buf;
...

User::LeaveIfError(file.Read(buf));
...

CleanupStack::PopAndDestroy(2, &fs); 

 Connect the session
Closes fs if a leave occurs

Create a file

A subsession which represents a file, as below

Closes file if a leave occurs

Submit a read request using the subsession

Clean up the RFile subsession and RFs session
This calls RFile::Close() on file 

and RFs::Close on fs
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File Server Session Class

The code example uses the cleanup stack 

• To ensure that the resources associated with the open file server session and file subsession 
are leave-safe

Note: If the sessions objects are members of a class

• It is not necessary to use the cleanup stack to protect them as the class destructor will ensure 
the session and subsession are closed

If a file is not closed explicitly 

• By using RFile::Close()

• It will be closed when the server session associated with it is closed 

• But it is good practice to clean up any file handle when it is no longer required
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File Server Session Class

A connected RFs session 

• Can be used to open any number of files or directories (as 
subsessions) 

• Or to perform any other file-related operations 

A file server session 

• Can be kept open for the lifetime of an application

The RFs class 

• Provides many useful file system-related operations

Including the following ...
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The RFs class

Delete() and Rename() 

• Used to delete or rename the file specified

Replace() 

• Used to move a file to a different location

MkDir(), MkDirAll(), RmDir() and Rename() 

• Used to create, remove and rename the directories specified

Att(), SetAtt(), Modified() and SetModified() 

• Used to read and modify directory and file attributes 

• Such as hidden, system or read-only flags
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The RFs class

NotifyChange()

• An asynchronous request for notification of changes to files, directories or directory 
entries 

NotifyChangeCancel()

• Used to cancel the outstanding request

Drive(), SetDriveName(), Volume() and SetVolumeLabel() 

• Used to manipulate drive and volume names

ReadFileSection()

• Used to “peek” at file data without opening the file
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The RFs class

AddFileSystem(), MountFileSystem(), 
DismountFileSystem() and RemoveFileSystem() 

• Used to dynamically add and remove file system plug-ins

• That extend the file server types Symbian OS can support

Examples of potential file system plug-ins include

• Support for a remote file system over a network

• Encryption of file data before it is stored 

The plug-in file system modules

• Are implemented as polymorphic DLLs of targettype fsy 
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File Handle Class

The RFile class 

• Is a subsession of an RFs client session to the file server 

An RFile object 

• Represents access to a named, individual file 

Providing functions to

• Open, create or replace the file 

• Or to open a temporary file

• To read from and write to the file

13
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The RFile Class

RFile::Open() 

• Used to open an existing file; an error is returned if it does not already exist

RFile::Create() 

• Used to create and open a new file 

• An error - KErrAlreadyExists - is returned if the file already exists

RFile::Replace() 

• Creates a file if it does not yet exist

• Deletes an existing version of the file and replaces it with an empty one if it does exist

RFile::Temp() 

• Opens a new temporary file and assigns a unique name to it
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File Handle Class

A common pattern 

• Is to call Open() to attempt to open an existing file 

• Then call Create() if it does not yet exist

For example

• When using a log file, an existing log file should not be replaced 

• But simply have data appended to it:

15

RFile logFile;
TInt err=logFile.Open(fsSession,fileName,shareMode);

if (err==KErrNotFound) 

    err=logFile.Create(fsSession,fileName,shareMode);
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File Handle Class

When opening a file 

• A bitmask of TFileMode values is passed 

• Indicating the mode in which the file is to be used 

• Such as for reading or writing

The share mode 

• Indicates whether other RFile objects can access the open file 

• And whether this access is read-only 

• i.e. files may be opened exclusively or shared 

For shared files

• A region may be locked using RFile::Lock() to claim temporary exclusive 

access to a region of the file

• Unlocked using RFile::Unlock()
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File Handle Class

When a file is already open for sharing

• It can only be opened by another program using the same share mode as the one in which it 
was originally opened

For example 

• To open a file as writable and shared with other clients:

• If another RFile object tries to open ASDExample.ini in EFileShareExclusive or 

EFileShareReadersOnly mode access is denied 

• It can only be accessed in EFileShareAny mode 

• Or through use of the RFs::ReadFileSection() method ...

17

RFile file;
_LIT(KFileName,"ASDExample.ini");
file.Open(fsSession,KFileName,EFileWrite|EFileShareAny);
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File Handle Class

RFs::ReadFileSection() method

• Can read from a file without opening it

• Thus the contents of a file can never be truly locked

• Either through use of RFile::Open() methods with EFileShareExclusive 

flags

• Or by calling RFile::Lock()

RFs::ReadFileSection() 

• Is used by Apparc and the recognizer framework to determine the type of a file by 

rapid inspection of its contents. 
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File Handle Class

The RFile::Write() methods 

• Write data from a non-modifiable 8-bit descriptor object - const 
TDesC8&

The RFile::Read() methods 

• Read data into an 8-bit descriptor - TDes8&

Both Read() and Write() methods 

• Are available in synchronous and asynchronous forms

Although 

• Neither the asynchronous Read() nor the asynchronous Write() 

method can be cancelled

19
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File Handle Class
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_LIT(KASDExample,"c:\\ASDExample.ini");
RFile file;
User::LeaveIfError(file.Open(fs, KASDExample,
              EFileShareExclusive|EFileWrite));

_LIT8(KWriteData,"Hello ASD");

file.Write(KWriteData);

TBuf8<5> readBuf;
file.Read(readBuf); 
file.Close();

 Open ASDExample.ini

Write to the file

Read from the file

readBuf contains "Hello"
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File Handle Class

There are several variants of

•  RFile::Read() and RFile::Write() 

There are overloads which allow 

• The receiving descriptor length to be overridden

• The seek position of the first byte to be specified

• Asynchronous completion 

• Or combinations of these

In all cases

• 8-bit descriptors are used ...
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Use of 8-bit descriptors

As a consequence

• Of using 8-bit descriptors 

RFile is not particularly well suited 

• To reading or writing the rich variety of data types that may be found in 
a Symbian OS application

This is not an accident!

• But a deliberate design decision to encourage the use of streams

• Which provide the necessary functionality and additional optimizations
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File Name Manipulation

Files on Symbian OS 

• Are identified by a file name specification which may be up to 256 characters in length

A file specification consists of:

• A device, or drive, such as c:

• A path such as \Document\Unfiled\ where the directory names are separated 

by backslashes (\)

• A file name

• An optional file name extension, separated from the file name by a period (.)
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File Name Manipulation

Symbian OS applications 

• Do not normally rely on the extension to determine the file type

• They use one or more UIDs stored within the file 

• To ensure that the file type matches the application

Subject to the overall limitation of 256 characters 

• A directory name, file name or extension may be of any length

The RFs::IsValidName() method 

• Returns a boolean value to indicate whether a path name is valid
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File Name Manipulation

The Symbian OS file system

• Supports up to 26 drives, from a: to z: 

On Symbian OS phones 

• The z: drive is always reserved for the system ROM 

• The c: drive is always an internal read–write drive

• On some phones may have limited capacity 

Drives from d: onwards 

• May be internal or may contain removable media

It may not be possible to write to all such drives

• Many phones have one or more read-only drives in addition to z:

• That are used only by the system

25
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File Name Manipulation
The file system 

• Preserves the case of file and directory names 

• All operations on those names are case-independent 

• This means that there cannot be two or more files in the same directory 

• With names which differ only in the case of some of their letters.

File names 

• Are constructed and manipulated using the TParse class and its member functions

• For example, to set an instance of TParse to contain the file specification c:
\Documents\Oandx\Oandx.dat:

26

_LIT(KFileSpec, "c:\\Documents\\Oandx\\Oandx.dat");

TParse fileSpec;
fileSpec.Set(KFileSpec,NULL,NULL);
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The TParse Class

Following this code

• The TParse getter functions can be used to determine the various components of the file 

specification

For example:

27

filespec.Drive(); // returns the string "c:"

fileSpec.Path();  // returns the string "\Documents\Oandx\"
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The TParse Class

TParse::Set() 

• Takes three parameters

The first parameter 

• Is the file specification to be parsed

• The second and third parameters are pointers to two other TDesC descriptors, 

and either or both may be NULL

The second parameter 

• Is used to supply any missing components in the first file specification

28
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The TParse Class

The third parameter 

• Should point to a default file specification 

• From which any components not supplied by the first and second parameters 
will be taken

Any path, file name or extension 

• May contain the wildcard characters ? or *

• Representing any single character or any character sequence

29
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The TParse Class

A TParse object owns an instance of TFileName

• Which is a TBuf16<256>

• Each character is 2 bytes in size

• The data buffer occupies 512 bytes 

This is a large object! 

• Its use on the stack should be avoided where possible
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Common Errors and Inefficiencies

A common compile-time error 

• Experienced by novice Symbian OS file system users occurs

• When attempting to use a 16-bit descriptor to read from or write

• To a file using an RFile handle. 

The RFile::Read() and RFile::Write() methods 

• Take only 8-bit descriptors 

• Meaning wide strings must first be converted

Another common error 

• Is the failure to make stack-based RFs or RFile objects leave-safe

• Through use of the cleanup stack
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Common Errors and Inefficiencies

Connections to the file server 

• Can take a significant amount of time to set up 

• RFs sessions should be passed between functions where possible

• Or stored and reused 

It is also possible to share RFile handles 

• Within a single process

• Or between two processes 

Allowing an open file handle 

• To be passed from one process to another 

• Is a necessary feature in secure versions of Symbian OS
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Common Errors and Inefficiencies

File system access code 

• Can also be made more efficient

• By remembering the implications of client–server interaction

• Efficiency can be improved by minimizing the number of client–server calls

• Transfer more data and thus make fewer file server requests 

For example

• It is more efficient to read once from a file into one large buffer

• Then access and manipulate this client-side

• Rather than make multiple read requests for smaller sections of a file
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Common Errors and Inefficiencies

Most file servers data-transfer clients

• Use the stream store or a relational database

• Which perform buffering automatically

• These components have optimized their use of the file server

• Callers that use these APIs rather than access the file server directly 

• Gain efficiency automatically
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Fundamentals of Symbian OS

Streams and Stores

‣ Know the reasons why use of the stream APIs may be preferred over use of RFile

‣ Understand how to use the stream and store classes to manage large documents most 
efficiently

‣ Be able to recognize the Symbian OS store and stream classes and know the basic 
characteristics of each (for example base class, memory storage, persistence, modification, 
etc.)

‣ Understand how to use ExternalizeL() and operator << with RWriteStream to 
write an object to a stream, and InternalizeL() and operator >> with 
RReadStream to read it back

‣ Recognize that operators >> and << can leave
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Streams

A Symbian OS stream 

• Is the external representation of one or more objects

Externalization 

• Is the process of writing an object’s data to a stream

Internalization

• The reverse process - reading an object’s data from a stream 

The stream

• May reside in a variety of media 

• Including stores, files or memory

• Streams provide an abstraction layer over the final persistent storage media.
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Streams

The external representation 

• Of an object’s data needs to be agnostic of the object’s internal storage

• Such as byte order and data alignment

• It is meaningless to externalize a pointer 

• It must be replaced in the external representation by the data to which it points
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Streams

The representation

• Of each item of data must also have an unambiguously defined length 

• Special care is needed when externalizing data types such as TInt

• Whose internal representation may vary in size between different processors and/or C++ 
compilers
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Streams

Storing multiple data items 

• That may come from more than one object

• In a single stream implies that they are placed in a specific order

Internalization code

• Which restores the objects by reading from the stream

• Must therefore follow exactly the same order used to externalize them
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Streams

The concept of a stream

• Is implemented in two base classes

RReadStream and RWriteStream 

• With concrete classes derived from them to support streams that reside in specific media

For example: 

RFileWriteStream and RFileReadStream 

• Implement a stream that resides in a file

RDesWriteStream and RDesReadStream 

• Implement a memory-resident stream whose memory is identified by a descriptor
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Streams
The RReadStream and RWriteStream base classes 

• Provide a variety of WriteXxxL() and ReadXxxL() functions 

• That handle specific data types

• Ranging from 8-bit integers e.g. WriteInt8L()

• To 64-bit real numbers e.g. WriteReal64L()

These functions are called 

• When the << and >> operators are used on the built-in types

To handle raw data

• The stream base classes also provide

• A range of WriteL() and ReadL() functions 

• Including overloads to read and write 16-bit Unicode characters 

• Rather than bytes
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Streams

The raw data functions 

• Should be used with caution:

1.   The raw data is written to the stream exactly as it appears in memory 

• It must be in an implementation-agnostic format before calling WriteL()

2.    A call to ReadL() 

• Must read exactly the same amount of data as was written by the corresponding WriteL() call

• This can be ensured by writing the length immediately before the data 

• Or terminating the data with a uniquely recognizable delimiter

3.  There must be a way to acquire the maximum expected length of the data

4.  The 16-bit WriteL() and ReadL() functions 

• Do not provide standard Unicode compression and decompression
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Streams - Externalize Example

The following example 

• Externalizes a TInt16 to a file named aFileName 

• Assumed not to exist before WriteToStreamFileL() is called

43

void WriteToStreamFileL(RFs& aFs, TDesC& aFileName, TInt16* aInt)

    {

    RFileWriteStream writer;
    writer.PushL(); // put writer on cleanup stack
    User::LeaveIfError(writer.Create(aFs, aFileName, EFileWrite));
    writer << *aInt;
    writer.CommitL();
    writer.Pop();

    writer.Release();

    }
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Streams - Externalize Example

The only reference

• To the stream is on the stack and code following it can leave 

• It is necessary to push the stream to the cleanup stack 

• Using the stream’s (not the cleanup stack’s) PushL() function
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Streams - Externalize Example

Once the file has been created

• The data is externalized using operator << 

The the write stream’s CommitL() function is then called

• To ensure that any buffered data is written to the stream 

The stream removed from the cleanup stack

• Using the stream’s Pop() function

Finally the stream is closed by calling Release()

• Which frees the resources it has been using
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Streams
 A common pattern:

• Operator << is used to externalize the data 

• Operator >> to internalize it

• Can be used for all built-in types

• Except those like TInt whose size is unspecified and compiler-dependent 

On Symbian OS 

• A TInt is only specified to be at least 32 bits 

• It may be longer!

• Thus externalizing it with operator << would produce an external representation of 

indefinite size

So ...

• The maximum length of the value 

• Is used to select an appropriate internalization and externalization method
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Streams

For example

• If the value stored in a TInt can never exceed 16 bits

• RWriteStream::WriteInt16L() can be used to externalize it 

• RReadStream::ReadInt16L() to internalize it:

47

TInt i = 1234;

writer.WriteInt16L(i); 
...

TInt j = reader.ReadInt16L();
... // Cleanup etc
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Streams

Operators << and >> 

• Can be used for any class that provides an implementation 

• Of ExternalizeL() and InternalizeL()

Which are prototyped as:

48

class TAsdExample
    {

public:

    ...

    void ExternalizeL(RWriteStream& aStream) const;
    void InternalizeL(RReadStream& aStream);
    ...

    }
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Streams
For such a class

• Externalization can use either:

• Or

• Which are functionally equivalent

Likewise for internalization 

• using operator >> or InternalizeL()
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TAsdExample asd;

...

writer << asd; // writer is RFileWriteStream 
               // initialized and leave-safe

TAsdExample asd;

...

asd.ExternalizeL(writer); // writer is RFileWriteStream
                          // initialized and leave-safe
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Streams

Note: Operators << and >> can leave 

• As the resulting operations allocate resources 

• Thus can fail if insufficient memory is available

• The operators must be used within a TRAP harness

• If they are called within a non-leaving function
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Stores
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Stores

A Symbian OS store

• Is a collection of streams

• Generally used to implement the persistence of objects

The abstract base class is CStreamStore

• Its API defines all the functionality needed to create and modify streams

• Used for all stores

• Classes derived from CStreamStore selectively implement the API according to 

their needs
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Stores

Stores can use a variety of different media including: 

• Memory CBufStore

• A stream CEmbeddedStore

And other stores 

• e.g. CSecureStore - which allows an entire store to be encrypted and 

decrypted

• The most commonly used medium is a file
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Stores

An important distinction 

• Between the different store types is whether or not they are persistent

A persistent store 

• Can be closed and re-opened and its content accessed

• The data in such a store continues after a program has closed it 

• Even after the program itself has terminated

• A file-based store is persistent

CBufStore is not persistent 

• Since the store consists of in-memory data which will be lost when it is closed
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Stores

55

CStreamStore
  
  

CBufStore
  
  

CSecureStore
  
  

CEmbeddedStore
  
  

CFileStore
  
  

CPersistentStore
  
  

CDirectFileStore
  
  

CPermanentFileStore
  
  

Store class hierarchy

 Concrete classes are highlighted in bold text
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Stores

Logical view of a persistent store

• The persistence of a store is implemented in the CPersistentStore abstract class

• It defines a root stream which is always accessible on opening the store

• The root stream (1) contains a stream dictionary of pointers to the remaining streams 

• Access to the rest of the data in the store is maintained

56

stream 1

stream 2

root stream 1
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Stores

The two file-based stores 

• CDirectFileStore and CPermanentFileStore 

• CPermanentFileStore allows the modification of streams after they have been written to 

the store

• CDirectFileStore does not allow modification after they have been written

This difference results 

• In the two stores being used to store persistent data for two different types of application

• Depending on whether the store or the application itself 

• Is considered to contain the primary copy of the application’s data ...
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Stores

For an application such as a database

• The primary copy of the data is the database file itself

• The application holds in memory only a small number of records from the file

• Any modified data is written back to the file - replacing the original version

Thus would use 

• An instance of CPermanentFileStore

• With each record being stored in a separate stream
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Stores

Other applications

• Such as games which store level data hold all their data in memory 

• load or save the data in its entirety

Such applications can use a CDirectFileStore

• Since they never modify the store content 

• but replace the whole store with an updated version
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Creating a Persistent Store

The following code

• Illustrates how to create a persistent store

• The example creates a direct file store 

• But creating a permanent file store follows a similar pattern
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Creating a Persistent Store

61

void CreateDirectFileStoreL(RFs& aFs, TDesC& aFileName, TUid aAppUid)

    {

    CFileStore* store = CDirectFileStore::ReplaceLC(aFs, aFileName,

                                                       EFileWrite);

    store->SetTypeL(TUidType(KDirectFileStoreLayoutUid,

                              KUidAppDllDoc, aAppUid));

    CStreamDictionary* dictionary = CStreamDictionary::NewLC();

    RStoreWriteStream stream;

    TStreamId id = stream.CreateLC(*store);

    TInt16 i = 0x1234;

    stream << i;

    stream.CommitL();

    CleanupStack::PopAndDestroy(); // stream

    dictionary->AssignL(aAppUid,id);

    RStoreWriteStream rootStream;

    TStreamId rootId = rootStream.CreateLC(*store);

    rootStream << *dictionary;

    rootStream.CommitL();

    CleanupStack::PopAndDestroy(2); // rootStream, dictionary

    store->SetRootL(rootId);

    store->CommitL();

    CleanupStack::PopAndDestroy(); // store

    }

We will walk through line by line ...
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Creating a Persistent Store

The call to ReplaceLC() 

• Will create the file if it does not exist

• Otherwise it will replace any existing file

• The name of the ReplaceLC()method indicates that a reference to the store is left 

on the cleanup stack - to make it leave-safe 

• In a real application - it may be more convenient to store the pointer in an object’s 

member data

Once created it is essential to set the store’s type:
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store->SetTypeL( TUidType(KDirectFileStoreLayoutUid,
 KUidAppDllDoc, 

 aAppUid));
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Creating a Persistent Store

The three UIDs in the TUidType indicate

• The file contains a direct file store 

• The store is a document associated with a Unicode application 

• It is associated with the particular application whose UID is aAppUid

For the file

• To be recognized as containing a direct file store 

• It is strictly necessary only to specify the first UID - KDirectFileStoreLayoutUid

• Leaving the other two as KNullUid

• Including the other two allows an application to be certain that it is opening the correct file
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store->SetTypeL( TUidType(KDirectFileStoreLayoutUid,
 KUidAppDllDoc, 
 aAppUid));
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Creating a Persistent Store

For comparison

• The following code creates a permanent file store:

• Note that the CreateLC() function is typically used 

• Rather than ReplaceLC()  since it is less usual to need to replace a permanent file store
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CFileStore* store = CPermanentFileStore::CreateLC(aFs, aFileName,
                                                       EFileWrite);

store->SetTypeL(TUidType(KPermanentFileStoreLayoutUid,
                               KUidAppDllDoc, aAppUid));
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Creating a Persistent Store

Creating, writing and closing a stream 

• Follow a similar pattern to that discussed above:

• The important difference is that an instance of RStoreWriteStream 

• Rather than RFileWriteStream 

• Must be used to write a stream to a store

• The CreateL() and CreateLC() functions return a TStreamId
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RStoreWriteStream stream;
TStreamId id = stream.CreateLC(*store);
TInt16 i = 0x1234;

stream << i;
stream.CommitL();
CleanupStack::PopAndDestroy(); 
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Creating a Persistent Store

Once writing the stream is complete

• The stream dictionary created earlier in the example 

• Can be used to make an association between the stream ID and an externally 
known UID:

Once all the data streams

• Have been written and added to the stream dictionary

• The stream dictionary itself must be stored ...
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dictionary->AssignL(aAppUid,id);
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Creating a Persistent Store

This is done by creating a stream to contain it

• Then marking it in the store as the root stream:
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RStoreWriteStream rootStream;
TStreamId rootId = rootStream.CreateLC(*store);
rootStream << *dictionary;
rootStream.CommitL();
CleanupStack::PopAndDestroy(); // rootStream
...

store->SetRootL(rootId);
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Creating a Persistent Store

All that remains 

• Commit all the changes made to the store 

• Then to free its resources by the calling the cleanup stack’s PopAndDestroy()

• The store’s destructor takes care of closing the file and freeing any other resources
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store->CommitL();
CleanupStack::PopAndDestroy(); // store
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Creating a Persistent Store

If a permanent file store is created

• It can later be re-opened and new streams added 

• Or existing streams replaced or deleted

To ensure that the modifications 

• Are made efficiently, replaced or deleted streams are not physically removed from the 
store 

• Thus the store will increase in size with each such change

To counteract this

• The stream store API includes functions to compact the store

• By removing replaced or deleted streams
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Note

It is important 

• Not to lose a reference to any stream within the store 

• This is analogous to a memory leak within an application

• Resulting in the presence of a stream that can never be accessed or removed

Arguably

• Losing access to a stream is more serious than a memory leak

• As a persistent file store outlives the application that created it

The stream store API contains a tool

• Whose central class is CStoreMap to assist with stream cleanup

• Not covered here please see SDK
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Reading a Persistent Store

The following code 

• Opens and reads the direct file store created in the previous example:
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void ReadDirectFileStoreL(RFs& aFs, TDesC& aFileName, TUid aAppUid)

    {

    CFileStore* store = CDirectFileStore::OpenLC(aFs, aFileName,
                                                     EFileRead);

    CStreamDictionary* dictionary = CStreamDictionary::NewLC();
    RStoreReadStream rootStream;
    rootStream.OpenLC(*store, store->Root());
    rootStream >> *dictionary;
    CleanupStack::PopAndDestroy(); // rootStream

    TStreamId id = dictionary->At(aAppUid);
    CleanupStack::PopAndDestroy(); // dictionary

    RStoreReadStream stream;
    stream.OpenLC(*store, id);
    TInt16 j;

    stream >> j;
    CleanupStack::PopAndDestroy(2); // stream, store

    }
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Reading a Persistent Store

After opening the file store 

• For reading, and creating a stream dictionary

• The code opens the root stream by calling RStoreReadStream::OpenLC()

• Passing in the TStreamId associated with root stream

• Which can be acquired from the store using store->Root()
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Reading a Persistent Store

Once the root stream is opened

• Its content can be internalized to the stream dictionary

• Using the dictionary’s At() function

• The dictionary is then used to extract the IDs of the other streams in the store

• Each stream can then be opened individually and internalized

• As appropriate for the application concerned
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Embedded Stores

A store

• May contain an arbitrarily complex network of streams

• Any stream may contain another stream — by including its ID

• A stream may itself contain an embedded store

It may be useful

• To store a collection of streams in an embedded store

• From the outside - the embedded store appears as a single stream 

• Can be copied or deleted as a whole without the need to consider its internal 
complexities 
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Embedded Stores

An embedded store cannot be modified

• Thus behaves like a direct file store 

• Which means that a permanent file store cannot be embedded
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Embedded Stores

76

Embedded File Store
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Swizzles

Stores can be used to manage complex data relationships

• Such as that in a large document which may embed other documents within itself

An efficient way to manage memory in cases like this 

• Is to use a class which maintains a dual representation of the data

• Defer loading it into memory from a store until required to do so
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Swizzles

The templated swizzle classes 

• CSwizzleC<class T> and CSwizzle<class T> 

• Can be used to represent an object 

Either by:

• Stream ID the stream contains the external representation of that object

• Pointer - if the object is in memory
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Swizzles

Externalizing a swizzle is a two-stage process which involves:

• Externalizing the in-memory object which the swizzle represents - to its own stream

• Externalizing the resulting stream ID

A typical container-type object 

• Does not hold a pointer directly to a contained object

• But owns a swizzle object which can represent the contained object

• Either as a pointer or as a stream ID
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Curriculum Check ListFundamentals of Symbian OS

 File Server and Streams

✓ The Symbian OS File System

✓ Streams and Stores	
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