Clipping of images
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1. Views, windows, buttons:

the need for clipping

2. Clipping algorithms

• Clipping simple points

• Clipping line segments use parametric representation

– against one edge of the window

- against the whole window

3. Cohen -Sutherland algorithm for line clipping  (2D version)

4. Clipping of filled polygons

5. Cyrus-Beck algorithm

6. Conclusions

Clipping on a Raster Display
[image: image74.emf]
The fact that you are not drawing anything outside the window is what ensures this visual impression of a "window".
If we need to clip a primitive, such as a circle or a polygon, there are new vertices, new edges... We must find these vertices, and the edges. Note that there can be more vertices and edges after clipping than before clipping. 
As the clipping will be done quite often, it must be a simple and non-costly algorithm. Also, for time requirements, the clipping take place before the rasterization. If not, you could be rasterizing enormous objects that are actually not being displayed. 

Clipping Algorithms

Clipping algorithms are designed to efﬁciently identify the portions of a

scene (in viewing coordinates) that lie inside a given viewport.They are

useful because they

•excludes unwanted graphics from the screen;

•improves ef ﬁciency,as the computation dedicated to objects that ap-

pear off screen can be signi ﬁcantly reduced;

•can be used in other ways (modelling of rectangular aperatures,for

example).

Two possible ways to apply clipping in the viewport transformation:

1.Apply clipping in the world coordinate system:ignore objects (e.g.,

vertices,line segments,and polygons)that lie outside of the window.

2.Apply clipping in the device coordinate system:ignore objects that lie
outside of the viewport.
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Approaches to clipping
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[image: image2.png]Clipping: the basic problem
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We want to clip objects that protrude past the bounds of the display/window: inefficient to do otherwise. 

Clipping can be accomplished: 

· before scan conversion: analytically (floating point intersections), so all generated pixels will be visible. 

· during scan conversion: scissoring 

- simplest, brute-force technique 

- scan-convert entire primitive and write only visible pixels 

- may be fast in certain circumstances, if bounds check can be done quickly 

· after scan conversion: create the entire canvas in memory and display only visible parts (used for panning large static scenes, text) 
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Endpoints 

What criteria must an endpoint satisfy to be inside (outside) the clipping rectangle? 

1. If the endpoints of a line are within the clipping rectangle, then the line is completely inside (trivially accepted) 

2. If 1 endpoint is inside and the other is outside then we MUST compute the point of intersection 

3. If both endpoints are outside then the line may or may not be inside 

Therefore, a good approach will eliminate trivial acceptances/rejections quickly and devote time to those lines which actually intersect the clipping rectangle. Consider the following methods: 

1. Analytical (solve simultaneous equations) 

2. Cohen-Sutherland algorithm 

3. Cyrus-Beck algorithm (Liang-Barsky) 
1. Before we discuss clipping lines, let's look at the simpler problem of clipping individual points. 

If the x coordinate boundaries of the clipping rectangle are Xmin and Xmax, and the y coordinate boundaries are Ymin and Ymax, then the following inequalities must be satisfied for a point at (X,Y) to be inside the clipping rectangle: 

Xmin < X < Xmax

and Ymin < Y < Ymax

If any of the four inequalities does not hold, the point is outside the clipping rectangle.

Clipping a point against a window is not a major difficulty, as you can see.
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If we're clipping before rasterizing, then we're clipping in the application model.
Before clipping line segments against a complete window, we shall start by clipping them against just one edge of the window. 

In the next slide, we will introduce an algorithm for clipping a line segment against any kind of line, not just horizontal or vertical lines. Of course, this algorithm becomes simpler if you restrict yourself to horizontal or vertical lines. 

Asking the question properly is 90 % of finding the answer easily. In that case, we are looking for the intersection of a line segment and an infinite line (the window boundary). For both, we have several different mathematical expressions. 

If we pick the correct mathematical expression, the problem will solve itself right away. What do you think? (the answer is on the next slide, of course) 
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In that case, we know we will be testing the respective positions of several different points on the line: 

· The starting point of the line segment. 

· The ending point of the line segment. 

· The intersection point between the line segment and the clipping line. 

We will want to know whether the intersection point is between the starting point and the ending point, or before the starting point, or after the ending point. 

In that case, it makes sense to use parametric representation for the line segment (see the slide). 

If the line segment goes from P to Q, we introduce a vector u=PQ, and the line segment is defined as M(t) = P + t u, with u in [0,1]. 

· t=0 is for M equals P, the starting point of the segment. 

· t=1 is for M equals Q, the ending point of the segment. 

· t negative is for points before the starting point 

· t greater than 1 is for points after the ending point 

· Any value of t between 0 and 1 is for points inside the line segment. 

The next big question is: how should we define the clipping boundary? Our definition must make it easy to compute the intersection point between the two. 
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For the boundary, we will use the definition of a line with a point and a normal. 

The boundary will be defined by the point E and the normal n. The boundary is hence the set of all the points M for whom EM*n = 0. 

The good point with that definition is that it also gives us the notion of inside and outside. 

A point is inside the area delimited by the boundary if and only if EM*n is negative. It is outside if EM*n is positive. 

Mathematical warm-up: 

· You can find the normal to a line from the equation (ax+by+c=0) of that line; do you remember the method? 

· How does the previous dot product (EM*n) simplifies if I have an horizontal or vertical line? 
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Having the intersection point is not enough. What part of the line segment is inside, and what part is outside? 
If the intersection point is at t, should I draw from 0 to t (from point P to the intersection point) or from t to 1 (from the intersection point to point Q)? 

All this depends on the respective orientation of the line segment and the clipping boundary. 
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From the signe of the dot product PQ*n, we know the orientation of the line segment: 

· If it is positive, the line segment is going from the outside to the inside (we say it is entering). We should draw from t to 1. 

· Of course, it t is greater than 1, in that case, we draw nothing. 

· And if t is negative, in that case, we only draw from 0 to 1. 

· If on the other hand PQ*n is negative, the line is going from the inside to the outside. (we say it is leaving). We should draw from 0 to t. 

· It t is greater than 1, in that case, we draw only from 0 to 1. 

· And if t is negative, in that case, we draw nothing. 

To clip a line against a window, we basically clip it against the four boundaries, using the previous algorithm. 
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To clip the line fully against the window, we need to compute the new starting point. 

We apply the previous algorithm to each of the four boundaries. 

For each boundary, we therefore have a t value, and whether the line segment was entering or leaving at this specific boundary. 

Initially, t_entering is equal to 0, and t_leaving is equal to 1. 

We should draw from the greater t_entering value to the smaller t_leaving value. 

Of course, if t_entering is greater than t_leaving, we do not draw anything at all. 
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[image: image14.png]Clipping a line: conclusion
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The Cohen-Sutherland Algorithm for line clipping
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We consider the clipping of lines to a rectangular window with sides parallel to the co-ordinate axes. For efficiency the algorithm tries to accept/reject as many lines as possible with a simple test. Four cases can be distinguished: 

1. Both end points in the window - accept the whole line. 

2. Both end points above/below/left of/right of the window - reject the whole line. 

3. One end point in the window, the other outside - split at intersection of line with a window edge (at A) and reconsider portion of line inside window (PA). 

4. Both end points outside the window - split at the intersection of the line with a window edge (at B) and then reconsider the portion of the line at the window side of the intersected edge (PB). 

Note that this process,at worst, will require two intersection tests. However in situations when the entire image is entirely within the window or when only a small proportion of the image is within the window then very few (expensive) intersection tests will be done. 

· Better approach: 

· test if the line is trivially accepted or rejected 

· compute only the intersections that are needed 

The clipping of a line to a rectangular Window in two-dimensions can be carried out by the Cohen-Sutherland algorithm. 

The Cohen-Sutherland Algorithm for line clipping is based on outcode. 

This divides space into the nine regions with bit codes as indicated below.

Each endpoint of the line is assigned a 4-bit 'outcode', based on these criteria: 

bit 1 - point above top edge  (Y > Ymax)

bit 2 - point below bottom edge (Y < Ymin)

bit 3 - point to right of right edge (X > Xmax)

bit 4 - point to left of left edge (X < Xmin)
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Thus if line has endpoints c1 and c2: 

· if c1 = c2 = 0 then line is inside 

· if c1 && c2 != 0 then the line is totally outside. (&& is logical and , != is not equal). 

Obviously if the logical and of two codes is non-zero then they must have at least one bit position in which both codes have a 1, if this is so then the line must be entirely above, below, left of or right of the window and hence should be rejected. 

If neither of these cases apply then one of the endpoints is chosen as the outside point, the intersection with a suitable boundary is calculated and the process is repeated with the line joining the intersection point and the other endpoint. 

So, if both ends have outcodes of 0000, then the line is trivially accepted, as it is entirely within the clipping rectangle. 

If the logical AND of the two outcodes is not zero then the line can be trivially rejected. This is because if the two endpoints each have the same bit set, then both points are on the same side of one of the clipping lines (ie. both to the right of the clipping rectangle), and so the line cannot cross the clipping rectangle. 

If a line cannot be trivially accepted or trivially rejected then it is subdivided into two segments such that one or both can be rejected. Lines are divided at the point at which they cross the clipping rectangle edges. The segment(s) lying outside the clipping edge is rejected. 

· Note that the resulting clipped segment does not necessarily have integer coordinates: need a special version of the midpoint line algorithm that uses real coordinates instead of integers. 

Lets consider next example of clipping:

Clipping
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Consider line AD (above). Point A has outcode 0000 and point D has outcode 1001. The line AD cannot be trivially accepted or rejected. D is chosen as the outside point. Its outcode shows that the line cuts the top and left edges (The bits for these edges are different in the two outcodes). Let the order in which the algorithm tests edges be top-to-bottom, left-to-right. The top edge is tested first, and line AD is split into lines DB and BA. Line BA is trivially accepted (both A and B have outcodes of 0000). Line DB is in the outside halfspace of the top edge, and gets rejected.

Extension to three-dimensions  Clipping

The Cohen-Sutherland algorithm (3D Version)

The Cohen-Sutherland algorithm extends to 3D very simply. The outcode for 3D clipping is a 6-bit code. For a parallel canonical view volume the bits represent: 
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bit 1 - point above view volume (Y>1)

bit 2 - point below view volume (Y<-1)

bit 3 - point to the right of view volume (X>1)

bit 4 - point to the left of view volume (X<-1)

bit 5 - point behind view volume (Z<-1)

bit 6 - point in front of view volume (Z>0)
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As in the 2D case, the line may be trivially accepted (both outcodes=000000), or trivially rejected ((code 1 AND code 2) not 000000). 

Otherwise line subdivision is used again. The points of intersection with the clipping edges are found using a parametric representation of the line being clipped. Consider the general line from P0 (x0, y0, z0) to P1 (x1, y1, z1). Its parametric representation is: 

x = x0 + t(x1 - x0)              (1)

y = y0 + t(y1 - y0)              (2)

z = z0 + t(z1 - z0)              (3)

0 <= t <= 1

As t varies from 0 to 1 these equations give the coordinates of all the points on the line between P0 and P1. 

EXAMPLE: To calculate the intersection of a line with the y=1 plane, y=1 is substituted into equation (2). Rearranging this gives: 
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Substituting (4) into (1) and (3) yields: 
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As all the values in equations (5) and (6) are known, these two equations can be solved to find the x and z coordinates of the point of intersection. Using this information the line can be divided in two.

The same basic principles are applied, but each edge is clipped in turn to each plane of the view-volume. Points are still categorised as inside or outside - tests are much simplified in the case of the Canonical View Volumes. 

Clipping of Filled Polygons

In clipping a polygon considered only as its edges each edge is clipped individually using a line clipping routine. However when a filled polygon has to be clipped the problem becomes more difficult. The problem arises because the result of a filled polygon clip may be a single polygon, may produce many exterior edges or multiple disjoint areas as illustrated below: 
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The Sutherland-Hodgman Algorithm for polygon clipping

This algorithm uses a divide-and-conquer approach, it clips the polygon in turn to each extended edge of the clip polygon. The algorithm may be used to clip any polygonal fill area (convex or concave) to a clip region which may be any convex polygon. This process is illustrated below for a rectangular clip area: 
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Thus in going from (1) to (2) the polygon is clipped to the extended right-hand edge of the clip rectangle, then from (2) to (3) to the extended top edge, from (3) to (4) to the extended left-hand edge and is finally clipped to the extended bottom edge to produce the final clipped polygon in (5). 

Given a routine clip(poly,e,outlist) which clips the filled polygon poly to the edge e and places the vertices of the resultant filled polygon in outlist it can be applied in turn to clip the edges of the polygon against each edge of the clip polygon. 

To clip to the edge e the following rules based on the categorisation of the end-points of the edges of the polygon are followed. The vertices of the polygon are traversed in order and each edge is examined in turn using the following rules: 
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· 1 -> 2 .. inside to outside - place intersection in outlist 

· 2 -> 3 .. outside to outside - no action 

· 3 -> 4 .. outside to inside - place intersection and visible end point in outlist 

· 4 -> 1 .. inside to inside - place second endpoint in outlist 

Carrying out this algorithm on the above example produces an outlist as shown above. If this algorithm is used in a case where multiple polygons are produced then it will produce some spurious edges coincident with the clip polygon. A post-processing stage can be used to eliminate these edges. 

Simple example of line clipping

This is a simple Example of line clipping : the display window is the canvas and also the default clipping rectangle, thus all line segments inside the canvas are drawn.

The red box is the clipping rectangle we will use later, and the dotted line is the extension of the four edges of the clipping rectangle.
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Clipping concept
Outcode

[image: image27]
Region and Outcode

Each region of the nine regions is assigned a 4-bit code, the nine regions and their outcodes are shown below:
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Line AD:

1. Test outcodes of A and D; can't accept or reject. 

2. Calculate Intersection point B, form new line segment AB and discard BD because it is above the window. 

3. Test outcodes of A and B; reject. 

Line EH:

1. Test outcodes of E and H; can't accept or reject. 

2. Calculate Intersection point G, form new line segment EG and discard GH because it is right to the window. 

3. Test outcodes of E and G; can't accept or reject. 

4. Calculate Intersection point F, form new line segment FG and discard EF because it is left to the window. 

5. Test outcodes of F and G; accept. 

Step by step example of polygon clipping

[image: image29]
The original polygon and the clip rectangle.
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After clipped by the right clip boundary.
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After clipped by the right and bottom clip boundaries.
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After clipped by the right, bottom, and left clip boundaries.
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After clipped by all four boundaries.
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Cyrus-Beck algorithm


Use of a parametric representation for the intersection of line and clipping edge keeps more computations in simpler parameter space and saves on the number of actual (x,y) coordinates which need to be calculated. 
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· create parametric representation of line [image: image36.png]Forl



: [image: image37.png]Ft) = Fo + (P — Fo)




· let [image: image38.png]


be the outward normal for edge [image: image39.png]



· pick an arbitrary point [image: image40.png]IE,



on edge [image: image41.png]



· the dot product [image: image42.png]Ni- [P{t) — Fg,|



determines whether the point [image: image43.png]P(t)



is ``inside'' the clip edge, ``outside'' the clip edge , or on it. 

· inside if [image: image44.png]Ni- [P{t)— Fg,| <0




· outside if [image: image45.png]Ni- [P{t)— Fg,| >0




· on edge if [image: image46.png]Ni- [P{t)— Pg| =





· the point of intersection between [image: image47.png]Forl



  and [image: image48.png]


  is given by [image: image49.png]P(t)



  when [image: image50.png]Ni- [P{t)— Pg| =




. 
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Substitute [image: image52.png]D = (£ — Fo



  for the vector from [image: image53.png]Fo



    to [image: image54.png]Fl



, then the equation for t is written as: 
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t will be valid under the following conditions: 

· [image: image56.png]Ni # 0



   (error, should never happen) 

· [image: image57.png]D#0



   (i.e. [image: image58.png]Fo # By



) 

· [image: image59.png]D#0



   (i.e [image: image60.png]Forl



   not parallel to [image: image61.png]


  ) 

Applying this algorithm for each edge of a rectangle yields 4 values of the parameter t. 
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Those values outside the range [0,1] can be trivially rejected since they represent points not on the line. 

For those which cannot be trivially rejected, classify endpoints in the following way: 

· if moving from [image: image63.png]Fo



  to [image: image64.png]Fl



  , an intersection occurs such that the inside halfplane of the edge is entered, it is classified as PE (potentially entering) 

· if moving from [image: image65.png]Fo



to [image: image66.png]Fl



, an intersection occurs such that the outside halfplane of the edge is entered, it is classified as PL (potentially leaving) 

Formally, the intersections can be classified based on the sign of the dot product [image: image67.png]


. Notice that intersections can be classified PE/PL during the computation of t. 

· PL if [image: image68.png]Ni- [P{t)— Fg,| >0




· PE if [image: image69.png]Ni- [P{t)— Fg,| <0




Given the PE/PL classification, and the constraints that [image: image70.png]te 0,1



 and [image: image71.png]tE < LI



, the true intersection points will be [image: image72.png]max{tg)



   and [image: image73.png]min{tz)



. 

The Liang-Barsky algorithm is similar, though it adds additional tests for trivial rejections. 
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